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ABSTRACT: We show that, for an electrical circuit made up of 

two-terminal components, Kirchhoff’s laws imply that the 

interconnection of the components is a neutral interconnection in 

a control theory sense.  

1. Introduction 

It is generally agreed that control theory and electrical circuit theory have a lot in common, 

and certainly some insights have been shared between those two subject areas. There is, 

however, a difference in approach when talking about connections between subsystems. In 

the language of control theory one talks of inputs and outputs, and an interconnection is what 

happens when the outputs of some subsystems are connected to the inputs of other 

subsystems. In circuits, inputs and outputs are not clearly defined, and interconnections 

happen when nodes are connected to other nodes. The concept of a “node” does not map 

easily into control theory terms. 

The constraints on interconnections of circuit components are Kirchhoff’s laws, and it is hard 

to express those without mentioning nodes and loops. 

In this paper we look for a way of expressing an equivalent of Kirchhoff’s laws in terms of 

inputs and outputs. The individual components in a circuit will almost be ignored, because 

the focus is on the interconnections. 

2. Neutral interconnections 

The notion of a neutral interconnection was introduced in [3]. The basic idea is that an 

interconnection of dissipative subsystems is called a neutral interconnection if the dissipative-

ness parameters of the interconnected system are the same as those of the original collection 

of subsystems. 

Suppose we have a number of subsystems that are (𝑄, 𝑆, 𝑅) dissipative in the sense 

〈𝑦𝑖, 𝑄𝑖𝑦𝑖〉𝑇 + 2〈𝑦𝑖 , 𝑆𝑖𝑢𝑖〉𝑇 + 〈𝑢𝑖 , 𝑅𝑖𝑢𝑖〉𝑇 ≥ 0 

for all 𝑖 and all 𝑢𝑖, assuming that each subsystem is initially at rest, where the subscript 𝑇 is 

the causal truncation operator, and 𝑢𝑖 and 𝑦𝑖 are the input and output, respectively. Let 𝑢 and 

𝑦 be vectors formed by stacking up the individual inputs and outputs. Then 

〈𝑦, 𝑄𝑦〉𝑇 + 2〈𝑦, 𝑆𝑢〉𝑇 + 〈𝑢, 𝑅𝑢〉𝑇 ≥ 0 
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where 𝑄 = 𝑏𝑙𝑜𝑐𝑘 𝑑𝑖𝑎𝑔{𝑄1, 𝑄2, 𝑄3, … }, and similarly for 𝑆 and 𝑅. That is, the collection of 

subsystems, with no interconnection between them, is (𝑄, 𝑆, 𝑅) dissipative. 

Now let those subsystems be interconnected via the equation 

𝑢 = 𝑢𝑒𝑥𝑡 − 𝐻𝑦 

where 𝐻 is a constant matrix, and 𝑢𝑒𝑥𝑡 is a vector of external inputs. A short calculation 

shows that 

〈𝑦, �̂�𝑦〉𝑇 + 2〈𝑦, �̂�𝑢𝑒𝑥𝑡〉𝑇 + 〈𝑢𝑒𝑥𝑡, �̂�𝑢𝑒𝑥𝑡〉𝑇 ≥ 0 

where 

�̂� = 𝑄 − 𝑆𝐻 − 𝐻𝑇𝑆𝑇 + 𝐻𝑇𝑅𝐻 

�̂� = 𝑆 − 𝐻𝑇𝑅 

�̂� = 𝑅 

We call the interconnection neutral if (�̂�, �̂�, �̂�) = (𝑄, 𝑆, 𝑅). Clearly the necessary and 

sufficient conditions for this to be true are 𝐻𝑇𝑅 = 0 and 𝑆𝐻 + 𝐻𝑇𝑆𝑇 = 0. 

The special case of passivity is of special interest. In that case the connection is neutral iff 

𝐻 + 𝐻𝑇 = 0. For a neutral interconnection in the passivity sense, the overall system is 

passive when all the subsystems are passive. Examples of neutral interconnections, in the 

passivity sense, are systems connected in parallel, and single-loop feedback. 

Intuitively, an interconnection described by Kirchhoff’s laws should be a neutral 

interconnection, because it is an interconnection that preserves passivity. (See Tellegen’s 

theorem in Section 4.) The aim of this paper is to explore that question, and specifically to 

find a way of expressing Kirchhoff’s laws as a feedback equation. 

3. Circuits as interconnections 

In control theory, an interconnection is a connection from the outputs of subsystems to the 

inputs of other subsystems. In circuit theory, the components (subsystems) are connected at 

nodes, and the rules controlling those connections are Kirchhoff’s voltage law (KVL) and 

Kirchhoff’s current law (KCL). Our goal in this paper is to ask whether Kirchhoff’s laws are 

more or less restrictive than the rules described in the last section, and to find a form of 

Kirchhoff’s laws that can be expressed as connections from outputs to inputs. 

Each component, a two-terminal object, has a voltage 𝑣𝑘 and a current 𝑖𝑘, 

and the relationship between them is the constitutive relation of that 

component. The selection of the reference directions of currents and voltages 

is largely arbitrary, but in what follows we will require that the directions be 

compatible in the following sense: the reference direction for current always 

flows from the + terminal to the – terminal, with those signs determining the 

reference direction for voltage. This is the normal convention for passive 

components. It is the opposite of what is normally assumed for sources, but 

this will not be a problem. 

For simplicity we consider only two-terminal components, but the extension 

to multiterminal components requires only minor changes of notation. A transistor, for 

example, has three terminals, but the voltage and current relations as seen from outside the 
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transistor still obey Kirchhoff’s laws. A transformer is commonly treated as two or more two-

terminal components, one for each winding. It is true that there are interdependencies 

between the windings, but those interrelationships occur only in the constitutive relations. 

They do not change how Kirchhoff’s laws apply.  

A complete circuit can be viewed as a graph, with a component (a subsystem) in each branch. 

The constitutive relations govern what happens in each branch, and KCL and KVL describe 

the interconnections. But can we describe the interconnections in terms of inputs and outputs? 

 For a single component we can say that the input is the current and the output is the voltage, 

or vice versa. If the relationship between voltage and current is invertible, we can choose 

either as the input. We can hit a complication in the case of some nonlinear circuits. With a 

tunnel diode, for example, we can express the current as a function of voltage, but the voltage 

cannot be expressed as a single-valued function of current. This restriction is fundamental: 

for some circuit components, there is no choice over which of the two variables should be 

called the input. 

Even without that problem, it is not clear how to express interconnections in terms of inputs 

and outputs. Circuit theory relies heavily on the concept of nodes, for which there is nothing 

comparable in input-output descriptions. Certainly we can consider each element to be a one-

port network, but the only obvious “port” interpretations are for series and parallel 

connections of one-ports. 

For deriving state equations we can extract the capacitors and inductors [1], leaving a 

multiport resistor. This, however, does not go as far as looking at how the resistive 

components are interconnected. 

Working in terms of two-ports is a little more promising. The following circuit can be 

thought of as a connection of four two-port circuits and one one-port capacitor, where the 

dotted lines show the separation between the subsystems. 

 

The port equations are easy to write down. A shunt resistor, for example, has port equations 

[
𝑣2

𝑖2
] = [

1 0
1

𝑅⁄ −1] [
𝑣1

𝑖1
] 

and the connections between the ports are easily interpreted as connections from outputs to 

inputs. 

This approach works well for ladder circuits, for parallel subcircuits, and a few other cases, 

but it is not sufficiently general. It is impossible, for example, to put a bridge circuit into this 

form. 
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4. Tellegen’s theorem 

Let 𝐴 be a matrix with entries 

𝐴𝑖𝑗 = {

+1       if 𝑖𝑗  flows into node 𝑖    

−1         if 𝑖𝑗  flows out of node 𝑖

0         otherwise                    

 

(We will need this definition again in Section 7.) Then it is easy to see that KCL becomes 

𝐴𝑖 = 0 

A row of 𝐴 can contain several nonzero entries, because several branches can be connected to 

a node. It is not hard to see, however, that each column may only contain two non-zero 

entries, one with value +1 and the other with value -1, because column 𝑗 corresponds to 

branch 𝑗. 

KVL is automatically satisfied if we assign a voltage, with respect to an arbitrarily chosen 

reference node, to each node. Let 𝑣𝑛𝑜𝑑𝑒 denote the vector of node voltages. Every branch 

voltage is the difference between two node voltages, and in fact the relevant two nodes are 

identified by the columns of 𝐴. With a suitable numbering of the nodes, the vector 𝑣 of 

branch voltages is given by 

𝑣 = 𝐴𝑇𝑣𝑛𝑜𝑑𝑒 

From this it easily follows that 

𝑣𝑇𝑖 = 𝑣𝑛𝑜𝑑𝑒
𝑇 𝐴𝑖 = 0 

This is the simplest form of Tellegen’s theorem [4]. It says that the sum of the powers 

consumed by the branches is zero. If we let one or more of those branches be ports, then the 

sum of the powers into the ports is equal to the sum of powers consumed by the non-port 

branches. (To see this, you have to observe that the current sign convention for a port is the 

opposite of that which we have adopted for the branches.) This implies, among other things, 

that an N-port made from passive components is itself passive. 

The complete statement of Tellegen’s theory is more flexible, because it allows the currents 

and voltages to be measured under different conditions, but we don’t need that version here. 

Although this is an elegant result, it is not quite what we need to pose the property in control 

theory terms. The method of proof does make it clear that this is about connections, with no 

reference to component properties, and this is a step towards what we want. It does, however, 

rely on the concept of “node voltage”, for which there is no good parallel in an input-output 

model. 

5. Tie-sets 

If one writes out the KCL equation at every node in a circuit, and the KVL equation for every 

loop, the result will be a lot of redundant equations. Two standard ways of going directly to a 

minimal set of equations are called cut-set analysis and tie-set analysis. In this section we will 

look at the tie-set approach. This is standard material [2], but needs to be described here 

because the topic appears to have disappeared from most modern texts. 
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Consider a circuit as a graph. (That is, we are identifying the nodes and branches, without 

needing to look at what components are in the branches.) A spanning tree of the graph is a 

subgraph that includes all nodes, but has no loops. The ties, also called links, are the branches 

that had to be removed to break the loops. 

The example at right 

shows, first the graph of a 

circuit with six nodes and 

nine branches, and then a 

spanning tree for that 

graph. The spanning tree 

is shown in bold, and the 

links as dotted lines. In 

what follows, we need the 

branches and links to be 

numbered, and to have a 

reference direction for every branch and link. (To reduce confusion, the links in this example 

have been “numbered” with the letters a, b, c, d.) The numbering and the assignment of 

directions are both completely arbitrary, but once the choice has been made we must remain 

consistent. 

It is important to understand that this is only one of the possible spanning trees. Several other 

choices would have been possible. 

Restoring one link to the tree creates exactly one loop, so we can say that each link defines a 

loop in the graph. Let us number the loops with the link numbers. 

We can divide the circuit currents into two groups. Let 𝑖𝑙𝑖𝑛𝑘 be a vector of link currents, and 

let 𝑖𝑏𝑟 be a vector of the remaining branch currents: the currents in the spanning tree. It does 

not matter how we number the branches, as long as we are consistent from this point on. 

Similarly, let 𝑣𝑙𝑖𝑛𝑘 be a vector of link voltages, and let 𝑣𝑏𝑟 be a vector of spanning tree 

branch voltages. 

Each spanning tree branch current is the superposition of one or more loop currents; that is, 

the sum of one or more link currents. Using this approach, KCL is automatically satisfied. 

Define a matrix 𝐵 by 

                  𝐵𝑗𝑘 = {
+1
−1
0

if branch 𝑗 is in loop 𝑘, with the same orientation
if branch 𝑗 is in loop 𝑘, with the opposite orientation
otherwise

 (1) 

Then that superposition can be expressed by 

𝑖𝑏𝑟 = 𝐵𝑖𝑙𝑖𝑛𝑘 

Now, each column of 𝐵 describes the path along one loop, so 𝐵𝑇𝑣𝑏𝑟 is the sum of voltages 

around the loop, not including the link that closes the loop. Adding in the link voltages, KVL 

for all loops is 

 𝑣𝑙𝑖𝑛𝑘 + 𝐵𝑇𝑣𝑏𝑟 = 0 

These equations are for a circuit with no external ports. To test for (external) passivity, we 

can create a port by breaking a link and insert a voltage source in the opposite direction from 

the reference direction for that link. Alternatively, we can add a current source parallel to one 

of the branches in the spanning tree, again in the opposite direction from the reference 
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direction. To be sure that the circuit is externally passive no matter where we create the port, 

we can add these “probe” sources in every possible branch. The above equations then become 

𝑖𝑏𝑟 − 𝑖𝑒𝑥𝑡 = 𝐵𝑖𝑙𝑖𝑛𝑘 

(𝑣𝑙𝑖𝑛𝑘 − 𝑣𝑒𝑥𝑡) + 𝐵𝑇𝑣𝑏𝑟 = 0 

where the 𝑖𝑒𝑥𝑡 and 𝑣𝑒𝑥𝑡 are the external sources. 

Now define 

𝑢𝑒𝑥𝑡 = [
𝑣𝑒𝑥𝑡

𝑖𝑒𝑥𝑡
]           and          𝑢 = [

𝑣𝑙𝑖𝑛𝑘

𝑖𝑏𝑟
]           and          𝑦 = [

𝑖𝑙𝑖𝑛𝑘

𝑣𝑏𝑟
] 

 

The equations now become 

[
𝑣𝑙𝑖𝑛𝑘

𝑖𝑏𝑟
] = [

𝑣𝑒𝑥𝑡

𝑖𝑒𝑥𝑡
] − [ 0 𝐵𝑇

−𝐵 0
] [

𝑖𝑙𝑖𝑛𝑘

𝑣𝑏𝑟
] 

or 

𝑢 = 𝑢𝑒𝑥𝑡 − 𝐻𝑦 

where 𝐻 + 𝐻𝑇 = 0. That is, we have finally put the Kirchhoff law equations into an input-

output form, and indeed the connection turns out to be a neutral interconnection in the sense 

of Section 2. 

6. Cut-sets 

Given a connected graph, a cut-set is a set of branches which, if removed, would separate the 

network into two disconnected parts. 

One way to form cut-sets is to start with a spanning tree. If we require the cut-set to include 

exactly one branch of the spanning tree, it can be seen that this specifies uniquely the set of 

links that must also be included in the cut-set. Thus, each branch in the spanning tree defines 

one cutset. For convenience we can use the branch number as the cutset number. 

Define a matrix 𝐶 by 

𝐶𝑖𝑗 = {
+1
−1
0

if link 𝑗 is in cutset 𝑖, with the same orientation
if link 𝑗 is in cutset 𝑖, with the opposite orientation
otherwise

 

Since a cutset divides the circuit into two parts, the sum of currents in a cutset must be zero. 

𝑖𝑏𝑟 + 𝐶𝑖𝑙𝑖𝑛𝑘 = 0 

Recall that, in the last section, we expressed the spanning tree branch currents as the 

superposition of link currents. It is clear that there is only one such combination of link 

currents, which implies that 𝐶 = −𝐵. Thus, apart from the sign, the cutset matrix is the same 

as the tieset matrix, even though they were derived by different reasoning. 

The difference between the cut-set and tie-set approaches lies in the choice of independent 

variables. In the tie-set case we start with the link currents, and express the KVL equations in 

terms of the link currents. In the cut-set case we start with tree branch voltages, and then 

write down an equivalent to the KCL equations. That difference, however, shows up only 

when we use the constitutive relations of the individual elements. If we focus only on the 
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interconnection equations, there is no difference between the two methods, and we are left 

with the previously derived equation 

 [
𝑣𝑙𝑖𝑛𝑘

𝑖𝑏𝑟
] = [

𝑣𝑒𝑥𝑡

𝑖𝑒𝑥𝑡
] − [ 0 𝐵𝑇

−𝐵 0
] [

𝑖𝑙𝑖𝑛𝑘

𝑣𝑏𝑟
] (2) 

which is in the form 

𝑢 = 𝑢𝑒𝑥𝑡 − 𝐻𝑦 

Note that there are usually many possible spanning trees, and therefore many different ways 

of choosing the inputs and outputs, each of which will lead to a different 𝐵 matrix. Every 

such analysis will, however, still produce the property 𝐻 + 𝐻𝑇 = 0, the defining property of 

a neutral interconnection. 

7. The converse result 

We have shown that Kirchhoff’s laws imply equation (2). For completeness, we should ask 

whether equation (2) implies Kirchhoff’s laws. 

For a completely arbitrary 𝐵, the answer is obviously no. Since the variables in (2) are tree 

branches and links, it is implied that a spanning tree has already been chosen, and that means 

that 𝐵 should be precisely the matrix in (1) that describes the topological detail: the 

relationship between tree branches and loops. 

In what follows we have no need of the external inputs, so we can set them all to zero. That 

leaves us with 

𝑣𝑙𝑖𝑛𝑘 =  −𝐵𝑇𝑣𝑏𝑟 

𝑖𝑏𝑟 = 𝐵𝑖𝑙𝑖𝑛𝑘 

For convenience, let us call the loops formed by the links the “basic loops”. The first of these 

equations says that KVL is obeyed around all the basic loops. We now have to ask whether 

KVL is also true around every other closed path. 

For closed paths that do not traverse any link, the result is trivially true. Any path that 

remains inside the tree can get back to its starting point only by retracing its outward path in 

the opposite direction. That means that the voltage drops along the way cancel each other out, 

for a final voltage drop of zero. 

For all other paths, it is sufficient to show that we can assign a node voltage (with respect to 

some reference) to every node, without contradictions. If that can be shown, then KVL must 

be satisfied for all possible paths through the graph. 

To assign node voltages, begin by choosing any basic loop. Select any node in that loop as 

the reference node, with a node voltage of zero, and then assign node voltages to the other 

nodes in that loop by adding or subtracting branch voltages while going around the loop. 

Because KVL is satisfied around a basic loop, the result will be back to zero by the time we 

get back to the starting point. That means that the node voltages along that path have been 

consistently assigned. 

Then work through the remaining basic loops. For each such loop, there are three 

possibilities: 
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(a) All nodes in the loop have already been assigned node voltages. In this case, we can 

skip this loop and pass on to the next. 

(b) None of the nodes in the loop have been assigned node voltages. That is, this loop has 

no nodes in common with previously considered loops. Put this loop on the back of 

the queue of loops still to be processed, and pass on to the next loop. We will come 

back to this loop later. 

(c) Some but not all of the nodes in the loop have been assigned node voltages. Traverse 

the loop, assigning node voltages to the nodes not yet processed. Again, the results 

will be consistent because KVL holds around this loop. 

In most cases this will result in node voltages being assigned to all nodes, in which case KVL 

must hold along all possible closed paths. There are, however, some pathological cases that 

can arise. 

First, it can happen that we are left with some unused basic loops that have no nodes in 

common with the nodes already dealt with. That breaks the nodes into two groups, where no 

basic loop crosses between the groups. This can happen if the circuit is really two or more 

separate circuits. The only other way it can happen is if there is a cutset consisting of one tree 

branch and no links. In either case, we can continue assigning node voltages by treating the 

disconnected part as a separate circuit. 

The second pathological case is where some nodes are left over after considering all basic 

loops. Those nodes cannot be part of any closed path apart from the tree-only paths that 

retrace their steps, and we have already shown that KVL holds for those paths. 

Proving KCL is a little easier. Since we want to look at all currents, not separated into tree 

branches and links, define 

𝑖 =  [
𝑖𝑏𝑟𝑎𝑛𝑐ℎ

𝑖𝑙𝑖𝑛𝑘
] = [

𝐵
𝐼

] 𝑖𝑙𝑖𝑛𝑘 ≜ �̂�𝑖𝑙𝑖𝑛𝑘 

Now we want to reintroduce the matrix 𝐴, connecting branches and nodes, that was used in 

the proof of Tellegen’s theorem. Specifically, we want to look at the product 𝐴�̂�. 

(𝐴�̂�)
𝑛𝑘

= ∑ 𝐴𝑛𝑚�̂�𝑚𝑘

𝑚

 

where 𝑛 is a node number, 𝑘 is a loop number, and the sum is over all elements 𝑚 in the 

loop. If node 𝑛 is not in loop 𝑘, every term in this sum will be zero. If loop 𝑘 does include 

node 𝑛, the sum will have exactly two nonzero terms 

(𝐴�̂�)
𝑛𝑘

= 𝐴𝑛𝑚1
�̂�𝑚1𝑘 + 𝐴𝑛𝑚2

�̂�𝑚2𝑘 

where element 𝑚1 is the element encountered just before node 𝑛, and 𝑚2 is the one just after, 

as we traverse loop 𝑘. Each factor has value +1 or −1. The signs of the �̂� entries depends on 

the orientation of the element relative to the loop direction, and the signs of the 𝐴 entries 

depends on the orientation of the element relative to the node. On looking at all four pairs of 

orientations, it is easily seen that 

𝐴𝑛𝑚2
�̂�𝑚2𝑘 = −𝐴𝑛𝑚1

�̂�𝑚1𝑘 

and therefore the sum is again zero. This means 

𝐴�̂� = 0 

𝐴𝑖 = 𝐴�̂�𝑖𝑙𝑖𝑛𝑘 = 0 
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Recall from Section 4 that the equation 𝐴𝑖 = 0 is precisely the statement of KCL. 

8. Conclusions 

The goal in this paper was to express the interconnection between components in a multi-

component circuit in terms of inputs and outputs. The answer turns out to lie in using a 

spanning tree of the circuit graph. Once a tree is chosen, the inputs are the link voltages and 

the tree currents, and the outputs are the link currents and the tree branch voltages. 

Regardless of which tree is chosen, Kirchhoff’s laws lead to an interconnection matrix which 

is a neutral interconnection in the sense of reference [3]. Conversely, the neutral 

interconnection equation implies Kirchhoff’s laws. 
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