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Abstract

This short note is concerned with a method for checking
stability of large-scale interconnected sysiems. Here we
take the dissipativity approach because our interest is in
cstablishing results for both internal and external be-
haviour of the interconnccted system. The novelty of
the result reported in here lics in the ability to handle
subsystcms whose propertics are known "locally” and
not globally. The rcsult has an immediate application in
studying the power system transicnt stability problem
and can have possible applications in robust systcm
analysis.
1. Introduction

The two, internal or state-space and cxternal or input-
output, representations arc widely used for stability anal-
ysis and controller design. Depending on the situation
cither one can be uscful so attempts [1] have been made
1o transfer analysis done on onc representation to an-
other. The analysis in [1} is for the case where all the
propertics hold globally. In [2] an attcmpt is madc to do
the same for systems where the required properties hold
only locally. Unfortunately the analysis in (2] is not
very helpful when we intend to analysc an interconnec-
tion of these "locally” known system. A large power
system is a good cxample of an interconnection of lo-
cally stablc systcms.

In this short note an attempt is made to develop a frame
work for the analysis of locally-dissipative
intcrconnccted systems.  The interconncction of
dissipative sysiems is covered in [3] along with a
rclationship between internal and external stability [4].
Scction 2 gives the basic notations and definitions.
Scction 3 gives the main result of this paper and scction
4 states the conclusions.

2. Notation and Definitions

Let U be an inner product space whose clements are
n

functions u: R = R. Also let U be the space of n-

tuples (column vectors) over U, with the usual inner

product, and the "truncated inner product” gencrating the
n

cxiended space U . as defined in 3},

A systcm with m inputs and p outputs may now be {or-

m P

mally defined as arclationon U, x U, ; that is, a sct
[ c

of pairs (U eU_,ve UPJ,whcrc uis an input and y

the corresponding output. We also assume that there

cxists a state space X for the dynamic system [3].

Definition A dynamic system is locally (Q, S, R)

dissipative in a region @ < X | if
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T
J.w (u,y) di= (y,Qy)T+ 2(y,Su)T+ (u,Ru)TZ 0

forall U€ Ugand Te R, such that x(0) = 0 and
x€ Q forall 0 <t <T.Q, S and R are constant
matrices of appropriate dimensions.

To proceed further we need the notation:

A
U (,, L Xos x1)=
{ue Uegix(to)=x4,x(t)=x,,x(€ Q, 1,<t< Ll}

Uty t,:X4:X ) denotes all the inputs belonging to
the extended space Uk, taking the state from x to x

and kceping it in a specified region Q2 for the entire dura-
tion [tg, ty].

Decfinition A state x] € Q is said to be locally
reachable wrt Q from xo € Q at time t] if 31, <11

such that U(tg, t1, Xg,X1) is non empty. A region QR

< Q of the state space of a dynamic system is said to be
locally rcachable with respect to Q if every state xj €
QR is locally reachable wrt Q from the origin for all ty

€ R. A region Q¢ € Q of a dynamic system is said to
be locally connected wrt Q if any x1 € Q, is locally
rcachable wrt Q from any other xg € Q, forall g € R.
Definition. A function ¢: Q x R — R is called a storage
function if it satisfies ¢ (o, t) = 0 for all t and
t
1

O (xgto) + | wlu y)dt 2¢(x ,t))
tO

for all t] 215 and all u € U (ip, tf, Xg, X1) and
o(x,t)=0forallxe Qandallte R.
Definition A dynamic system is said to be locally
uniformly uncontrollable at xg € int (Q) if, there exists
an open ncighbourhood Be of xg, such that for any x1€
B¢ there cexist choices of U € Ug and t] such that the
state can be driven from x (tg) = xo 10 x (t1) = x1, {x(1)
€ Q, g 2t 21,) with the additional property that

t

1

I w(u,y)dt| <p (I X~ xOII)

[O

for some continuous function p: R"— R* such that p(0)
= (0. The dynamic system is said to be locally uniformly
controllable at cvery state xq € int (Q).

Definition A dynamic system is said to be locally zero
state detectable in a region Q, with respect to Q if, for
any xo € Qy, xg #0such thatx (1) € Qforo<1<8
for some & > 0 with u(.) = 0, there exists a continuous
function o (0) = 0 and a (6) > 0 for all ¢ > 0 such that



1
[ytydt> oc(lxol), for some finite T such that
0

0<T<$8

If in addition, for any sequence {op} € Q, 0. (Op) — oo
as ll op Il & oo the system is called locally uniformly
zero state detectable in Q; with respect to Q.

Definition A dynamic system is said to have a property
A if there exists a well defined feedback law u* () such
that w (u* (), y) <O forally =0, u* (0)=0
andu*eU (to, t1, Xg» X1)-

3. Main results

First we will put conditions on the system and its local
properties such that it is internally stable.
Theorem 1 Let the dynamic systcm

(i) be locally ( Q, S, R) - dissipative in a region Q €
X; (ii) be locally connected in a region Q¢ wrt Q;
(iii) locally uniformly controllable in a region Q7 wrt
Q; (iv) locally uniformly zero state detectable in region
Q7 wrt Q; (v) locally Lipschitz continuous in the region
Q; (vi) have the property A. Furthermore, suppose that

the region Qs & Q¢ N Qyu¢ N Q; is non-empty, in the
sense that it contains an open neighbourhood of the
origin. Then if Q is negative definite then the origin is
asymptotically stable.
Proof: See [S. pp. 48-50]
Remark 1: The proof proceeds more or less on the stan-
dard lines as in [3]. The difference is only in the fact
that we need here only local description as opposed Lo
the global needed elsewhere. During the course of a
proof we need a storage function ¢ (x) which serves as a
Lyapunov function, needed to prove the asymptotic sta-
bility.
The next theorem refers to a lincar interconnection of N
locally-dissipative subsystems. The interconnection is
described by.

N
Ui=Uci_j§'l Hyypi=l..n M
Where Uj is the input to subsystem i, yj is the output,
Ugj is an external input, and the Hij are constant matri-
ces. A compact matrix notation is, with obvious defini-
tions, U=Ug - Hy
Theorem 2 Let the dynamic system be formed by inter-
connecting N subsystems via the interconnection (1) and
suppose that (i) The ith subsystem is locally (Q;, Si,
Rj) - dissipative in a region Qj satisfying conditions (i)-
(vi) of Theorem 1. (ii) The interconnection (1) is such
that the dynamic system state space { equal to the
cartesian product of the state space of the individual
subsystems and Q = Qj x ... x QN is a non-empty
region containing a neighbourhood of the origin (Q

€ Q). (iii) The overall system is uniformly zero state
detectable in a region Q with respeci to €, where Qy is
a non-empty region containing a ncighbourhood of the

origin (Qz € R). (iv) The overall system is locally
Lipchitz continuous in Q.
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/A%
Then if Q is positive definite, the origin is asymptoti-
cally stable

A
Where Q=SH + HT ST - HT RH-R and Q = diag.
(Qi), S = diag. (s, R = diag. (Rj).
Proof: See [S. pp. 50-52]

Remark 2: The proof is similar to the one in [3].
Again the concepts are local instead of global. The
above two theorems when put together give a method of
constructing Lyapunov functions for an interconnected
system. The steps to follow are;

1, Decompose a large-scale system into N subsystems.
2. Find out the storage function ¢i (xi), and the
corresponding (Qj, Sj, Rj) for each subsystem, using
methods discussed in [S].

3, Form the matrix Q= SH + HT ST - HT RH-Q and

check for its positive definiteness. If Q is positive

N

definition then % @ (x,) is a Lyapunov function. If
i=1

AQ is not positive definite, then it becomes necessary to
try another decomposition or different choice of (Qj, Sj,
Rj). The above three steps are successfully used to
construct Lyapunov functions for large power systems

[sl.
4, Conclusion

The main result stated in Theorem 2 is just the type of
result we need to study the behaviour of an intercon-
nected system whose subsystems are only "locally” de-
fined. To obtain the result we have made precise what is
"locally" required of the sub systems. If the definitions
are read carcfully one can see that "local” is both in
terms of small gain inputs [2] and local internal stability
regions. Hence, this short paper can be considered as a
contribution in extending the already available results of
[1], {2] [4]. This extension has an immediate application
for transient stability analysis of power systems [5].
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