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Abstract -- A state dependent cost of accepting a call is 
introduced to measure the benefit of alternate routes. This 
cost function, which requires expensive calculations, can be 
approximated to a linear form without much error. Based 
on this cost approximation, a dynamic trunk reservation 
level is derived. It is easy to implement on-line and gives a 
better overload performance than a fixed trunk reservation 
level. Simulation studies confirm our results. 

I INTRODUCTION 

Recent advances in Stored Program Control switching 
systems offer telephone networks improved flexibility in 
traffic control and management. With this capability, the 
network cost required to maintain a certain level of blocking 
performance in dynamic non-hierarchical routing networks 
is less than that in fixed hierarchical routing networks [1]. 

However non-hierarchical routing is found to be unstable 
under overload conditions. In 1973, N akagome and Mori 
[2] first reported on theoretical studies of the instabilities 
in symmetric alternate routing networks. Krupp [3] pre­
sented simulation results which exhibited bistable behavior. 
He also demonstrated that the high blocking probability is 
caused by excessive use of alternate routes, and that re­
serving a small number of trunks for direct-routed traffic in 
each group would stabilize the network and prevent degra­
dation of performance under overload. Later, Akinpelu [4] 
extended the analysis to more general non-symmetric net­
works and found that similar types of network instabili­
ties exist. She also proposed an empirically determined 5% 
trunk reservation level. 

A simple inference can show that the fixed trunk reserva­
tion may not be optimal. More trunks should be reserved 
to protect the direct routed calls under heavy traffic, while 
a lower trunk reservation level under lightly loaded condi­
tions can offer more alternate routes which reduce block­
ing. That is , the optimal trunk reservation level should 
depend on traffic load. Cameron first realized this and pro­
posed a dynamically adjusted protective allowance based 

on the overflow measurements [5]. Later Yum and Schwartz 
put forward an external blocking scheme [6] which simply 
switched off alternate routes at heavy traffic load. 

The foregoing results are basically heuristic: we know 
that trunk reservation can be beneficial, but the best level 
of reservation has to be determined experimentally. One 
might even say that trunk reservation falls into the category 
of "clever tricks" which are known to work in practice even 
though there is little supporting theory. In a recent paper 
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[7] Mitra et al derived a load dependent trunk reservation 
level by asymptotic analysis of the Fixed Point Model [8]. 

In this paper, we explore a theoretical basis for decid­
ing when to accept alternate-routed calls, based on deriv­
ing a formula for the state dependent cost of accepting a 
call . Here "state" refers to the occupancy of a network 
link, which is a common concept in telecommunication en­
gineering. The optimal decisions based on this cost formula 
would require expensive calculations, but we argue that a 
linear approximation to the cost gives results which are not 
too far removed from the optimum. With this approxima­
tion, it turns out that our results can be expressed in the 
language of dynamic trunk reservation. That is, the near­
optimal decision on whether to accept an alternate-routed 
call is based on comparing the number of free trunks with 
a threshold value; and we are able to give a simple formula 
for computing that threshold. 

II STATE DEPENDENT COST A ND ITS 
APPROXIMATION 

To provide a measure of the performance of a network 
link in operation, let each call be assigned a "worth". If the 
revenue from the link is the worth of total calls completed, 
then the cost of accepting a call is the worth of all the calls 
that are lost as a consequence of carrying that call on the 
link. The idea of translating call acceptance into the con­
cepts of revenue and cost was first proposed by F.P. Kelly. 
In [9] the cost was interpreted as Erlang's improvement for­
mula , 

p[EB(p, N - 1) - EB(p, N)] 
that is, the increase in the expected number of lost calls 
per unit time if a single circuit is removed from the link. 
This load dependent cost function is fundamental to Kelly's 
routing analysis. 

Realizing that the number of lost calls on a link is also 
dependent on the link occupancy, we try to define and cal­
culate a state dependent cost function. In the following, 
we will deal with B(t) the cumulative count of blocked 

calls on a teletraffic link with call arrival rate A and de­
parture rate p. Suppose at time t = 0, a call comes to 
a link with capacity N and occupancy Z(O) = I, I < 
N. The blocked call count for this link will start with 
E[B(O)IZ(O) = l + 1] = 0; on the other hand, if this in­
coming call is rejected (not blocked), the blocked call count 
will start with E[B(O)IZ(O) = l] = O. 

A ssume that during a time period (0, t], the number of 
call arrivals is equal to the number of call departures on 



that link, that is 
Z(t) = Z(O) 

this is true for a stationary queue, in particular for large 
t. At time t, the expected number of blocked call counts 
for the above two cases will be E[B(t)[Z(t) = 1 + 1] = 
E[B(t)[Z(O) = 1+1] and E[B(t)[Z(t) = I] = E[B(t)IZ(O) = 
I] respectively. And their difference is the expected number 
of additional calls blocked if we accepted the incoming call 
at t = 0, 

E[B(t)[Z(t) = 1 + 1]- E[B(t)[Z(t) = I] (1) 

It is expected that the first term in Equation (1) will in­
crease faster than the second term during the holding period 
of the additional call. After that the two increments will 
be the same. This means that the transient term of Equa­
tion (1) is significant when t is comparable with the mean 
holding time of that call. In order to calculate the steady 
state value of Equation (1), we need the following lemma, 
Lemma 1. [10J 

0< lim {E[B(t)[Z(t) = l+1J-E[B(t) [Z(t) = l]} < 00 (2) 
t-+oo 

Definition. The state dependent cost C'(l,p) of accept­
ing a call on a teletraffic link with call density p (= A/ j.t) 
and occupancy I is defined as the steady state value of the 
expected number of additional calls blocked on that group as 
a consequence of carrying the present incoming call. 

C'(l,p) � lim {E[B(t)[Z(t) = 1+ 1]- E[B(t)[Z(t) = I]} t-+oo 
(3) 

For a tcletraffic network, under a standard independent 
assumption [3], [4], [11], the overall cost of accepting a call 
is, of course L.gC;(l,p), where the sum is taken over all 
links involved in connecting the call. 

lt should be pointed out that this state dependent cost 
is similar to Krishnan's relative cost. In [12], the cost was 
derived by examining the state transition of a Poisson pro­
cess. Here our state dependent cost is derived through the 
dynamic analysis of an M / M / N / N queue, and has a clear 
statistical expression. In order to calculate the cost, we 
need the following result. 

Lemma 2. [1 OJ 
limt-+oo {(l + l)j.tPI+l(t)E[B(t)[Z(t) = 1+ 1] 

-API(t)E[B(t)[Z(t) = I]} = L.::P� L.�=o (��i); (4) 

With this result, our state dependent cost can be calculated 
by the following Theorem. 

Theorem 3. For a teletraffic link, the state dependent 
cost defined in Equation (3) is: 

C8(1, p) = 
E:�, I) (5) 

where PN is the blocking probability of that trunk group, and 
EB(p, I) is the Erlang-B formula. 
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The proof of this Theorem is given in the Appendix. 
The advantage of this cost function is that it is both load 

and state dependent. In Fig. 1 (a) and (b), C'(l, p) are 
plotted versus link state 1 in solid lines for N = 10 and 
N = 100 respectively under several offered traffic densities 
p. It can be seen thBct the cost is higher when occupancy is 
higher and/or traffic is heavy. 
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Figure 1: State Dependent Cost and Approximation 

The difficulty with Equation (5) is that EB(l,p) is not 
directly measurable and is quite time consuming to cal­
culate. Moreover the blocking probability PN is difficult 
to measure on-line; and, without this measurement, more 
computational effort will be involved. In order to obtain the 
state dependent cost C'(l , p) on-line, approximations have 
to be made to get a computationally effective form. Ob­
serve that all the cost functions are near linear above the 
0.5 line, it is tempted to use linear approximation for this 
part of the curves. It will be shown later that fortunately 
only this part of cost functions are needed in determining 
trunk reservation level. 

In order to make the linear approximation we need one 
point and one slope. At 1= N, we have EB(p, N) = PN, 
so that C'(I,p)h=N = 1 is naturally a good candidate for 
the point. For the slope, we need the derivative DO(/, p) of 
the cost which is given by the following corollary. 

Corollary 4. [10} 

D'(l ) � 8C'(l, p) "" (1- �)C'(l ) + 
PNP 

,p 81 "" I 
,p I 

(6) 

The slope at the end-point equals the derivative at I = N, 
and this simplifies to 

D'(N )I -
N-(l-PN)p ,p I=N - N 

With the above end-point and slope, we obtain a linear 
approximation C'(l,p) for the cost function C'(l,p) as: 

C"(l,p) � 1-
N - (�; PN)p (N -I) (7) 

where e � 1 is a factor chosen to adjust the slope to make 
a closer approximation. Numerical studies suggest that 



e = 1 + O.llnN is appropriate. The approximations for 
the above example of cost functions are shown in Fig.1 in 
dotted lines. 

III DYNAMIC TRUNK RESERVATION LEVEL 

It is easy to check that the cost C' (I, p) for carrying a 
call on a trunk group is always less or equal to one. This 
means that it is always of benefit to accept and complete an 
on coming call on the trunk group if there are free trunks 
available. This is true for direct-routed calls. For alternate­
routed calls which occupy two or more links, the cost is the 
sum over every link used, and this may be larger than one. 
In this case, it means that by carrying the incoming call 
on an alternate route, the sum of the expected number of 
calls blocked on each link may be more than one. At this 
stage, alternate routes are doing more harm than good to 
the network, and they should be closed by trunk reservation 
schemes. 

The problem with this criterion is that it depends on 
looking at more than one trunk group. For the sake of a 
simple implementation, a local criterion may be preferable. 
Let us therefore define a cost threshold 1] < 1, such that 
whenever the cost on a trunk group exceeds this threshold, 
free trunks will be reserved for direct-routed call use only. 
In this way, the state I, at which trunk reservation should 
be triggered is determined via, 

C'(l"p) = 1] (8) 

In a network with two link alternate routes, which is 
the case in many dynamic non-hierarchical networks , an 
alternate-routed call will worth half of a direct-routed call 
on each link. So it seemed that Tf should be around 0.5. 

As an example, consider the symmetrical, fully connected 
and uniformly loaded network analyzed in [3] and [6]. Un­
der an independence assumption, given a preassigned trunk 
reservation level r, network dynamics can be obtained by 
solving the following nonlinear algebraic equations - the 
Fixed Point Model, 

A 

PN 

xr 

where 

Pe{l + 2PN [1 - (1 _ x;)m]) 
Xr 

AN-r p� 
N! Po 

N-r-l Ai 
L: -;-Po 
i=O z. 

(9a) 

(9b) 

(9c) 

Here Pe is the end-to-end offered load, and A is the link 
offered load which includes both original and overflowed 
traffic. N is the link capacity and m denotes the number 
of two link alternate paths that a call can try before being 

blocked or rejected. PN, Po, and Xr are the probabilities 
of link blocking, empty and below the reservation level, re­
spectively. 

Network performance is defined as the end-to-end block­
ing probability EEBP, 

For a given end-to-end offered load pe and a fixed trunk 
reservation level r, network performance EEBP can be 
calculated by the above procedure. Let the optimal trunk 
reservation level r" be defined as that at which best perfor­
mance is obtained, 

r"(Pe) � {r : min EEBP(Pe, r)} 
r 

In Fig.2 (a) and (b) , r" are evaluated numerically for 
Network A (N = 20, m = 10) and �etwork B (N = 
100, m = 10) under various load conditions. 
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Figure 2: Link Cost at Optimal Trunk Reservation Level 

The cost thresholds at these optimal trunk reservation 
levels are also calculated, 

C'(/,p)II=N-r* = C'(N - r",p) 

Here, p is the average link offered load, 

p = xrA + (1 - Xr )Pe 
Fig.2 (c) and (d) shows that these thresholds are asymptot­
ically 0.5 when load is heavy. This result confirmed our cost 
analysis above. When the load is light, the cost thresholds 
are higher. This can be understood as that at light load, 
the average link costs stay at lower level, and even when 
the cost of one link on an alternate route equals to 0.5, 
the cost of the other link on that route is often less. So 
the sum of the two cost is usually less than 1 which means 



that this alternate route is still beneficial for use. At this 
circumstance, the cost threshold TJ should be raised higher 
to accept such beneficial calls. It is expected that other as­
pects such as routing algorithms and network structures etc 
would also have some effects on the value of TJ. Numerical 
studies showed that it is not sensitive to changing network 
conditions, and the optimal TJ is around 0.6. 

The problem in using Equation (8) is that the cost 
C' (I. , p) is an implicit function of t. in addition to the com­
putational complexity and measurement difficulties. So our 
approximation 6' (I, p) is used instead of C' (l, p). Applying 
Equation (7) in the judgment Equation (8), we obtain the 
dynamic trunk reservation level rs as: 

rs = N - 1. = 
(1 

- T})B N (10) 
N - (1- PN)p 

It is interesting to note that (1 - PN)p = E[Z(t)] is ac­
tually the expected number of calls in progress on that 
trunk group, and Z(t) the occupancy usually plays the role 
of "state" in many adaptive routing schemes [5], [7], [8]. 
So that for practical implementation in such cases, no ad­
ditional measurement is needed, and the computation in­
volved in Equation (10) isn't difficult for on-line evaluation 
of the dynamic trunk reservation level. 

IV PERFORMANCE COMPARISIONS 

In the following, performances of both fixed and dy­
namic trunk reservation schemes are studied on Network A 
(N = 20, m = 10) and Network B (N = 100, m = 10). 
For the fixed trunk reservation scheme, given the end-to-end 
offered load Pe and trunk reservation level rp = 5%N, net­
work states can be obtained by solving Equations (9a)-(9c) 
recursively. With our dynamic trunk reservation scheme, 
the trunk reservation level Equation (10) is added to the 
set of network equations. And rs can be solved together 
with other parameters. 
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Figure 3: Performance Comparisons 

In Fig.3 (a) and (b), the performances of network A and 
network B are evaluated respectively. Our dynamic trunk 
reservation scheme (SDTR - solid lines) is compared with 
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the fixed scheme (FXTR - dash-dotted lines) under vari­
ous load conditions. The performances under optimal trunk 
reservation levels (OPTR - stars) calculated numerically 
are also shown. The overload performance of SDTR is 
found to be much better than FXTR, and is near optimal. 

A detailed performance comparison of the two schemes 
with the optimal one are shown in Fig.4. In (a) and (b), 
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Figure 4: Detailed Performance Plots 

the performance differences between SDTR and OPTR are 
plotted in solid lines" the performance differences between 
FXTR and OPTR are plotted in dash-dotted lines. It can 
be seen that the dynamic scheme is superior over the fixed 
one under overload conditions, and its performance is very 
close to the optimal case. When load is light, there isn't 
much difference in the performance measures, since all the 
end-to-end blocking probabilities are nearly zero. If we 
change the scale in plotting the performances, e.g. use loga­
rithmic plot in Fig.4 (c) and (d), the differences in this light 
load area can be spotted. The performance of the dynamic 
scheme, although not as close to the optimal one as in the 
overload cases, is stilll not worse than the fixed one. 

Various trunk reservation schemes are simulated [13] on 
a 12 node network (N = 20, m = 10). We compared our 
dynamic scheme (SDTR) with the fixed scheme (FXTR) 
and no reservation scheme (NOTR). Their performances 
are plotted in dots in Fig.5. The theoretical performances 
calculated by the above procedures are also plotted in lines. 
Their consistency with the simulated data confirmed our re­
sults. It turned out that the fixed trunk reservation level 
can only be tuned to suit one traffic level, while our dynamic 
scheme takes care of all traffic conditions. The near opti­
mal performance under overload conditions makes the dy­
namic trunk reservation scheme an outstanding algorithm 
for overload control. 
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Appendix. PROOF OF THEOREM 3 

Multiply t.he cost function Equation (3) by API, 

APIC'(I,p) 

lim >'Pl(l)' lim {E[B(t)!Z(t) = 1+ 1]- E[B(t)!Z(t) = I]} 
t_oo t_oo 

= lim >,pl(t){E[B(t)!Z(t) = 1+ 1]- E[B(t)!Z(t) = In 
t .... oo 

Comparing this with Equation (4), we have 
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