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ABSTRACT 
A new Lyapunov function is constructed for a general n-machine 
power system with non-zero transfer conductance. The theory of 
dissipative dynamic systems is used and the procedure calls for 
checking positive definiteness of a sparse matrix 0. In this paper we 
report the results only for the case of non-uniform damping which is 
more complex than the uniformly damped system. The procedure is 
iterative and may fail to converge for very small damping and strong 
interconnections. The Lyapunov Function is a quadratic term plus a 
weighted sum of integrals a form not reported before. This is an 
extension of the previously reported [2] quadratic Lyapunov 
function. 

1. Introduction 

This paper reports a successful procedure to construct Lyapunov 
functions for a multimachine power system, with transfer 
conductances included, using dissipative systems theory [5] for 
large-scale interconnected system [4]. The stability test consists in 
testing a sparse matrix 0 for positive definiteness. The derived 
Lyapunov Fucntion, a quadratic term plus a weighted sum of 
integrals of all the non linearities is of a form not found in the 
literature to date. 

Araki et.a1.[7] and Jock et.a1.[8] derived Lyapunov functions with 
only (n-1) integral terms for an n-machine system. The method in 
[7] works only for the uniformly damped power system. There is 
an extension of [8] for the nonuniformly damped system. The 
method presented in this paper gives a larger region of stability and 
less restrictive conditions on system parameters for the existence of a 
Lyapunov function. All the attempts to derive a Lyapunov function 
in the manner of Aylett, with path independent integral terms, have 
failed [lo], although there exist some approximate methods [1],[11]. 
To obtain better results we manipulate system equations to get the 
results for some sector [o,k], k = diag (ki) and o 2 ki 2 1. This 
manipulation is possible because we decompose the system into 
small subsystems so the computational requirements increase only 
linearly. 

The paper is organised as follows: Section 2 discusses the problem 
formulation and Section 3 introduces the dissipative systems theory 
for interconnected systems. Section 4 introduces an n-machine 
power system first and then gives a step-by-step procedure to 
construct a Lyapunov function. Section 5 demonstrates the 
procedure using a numerical example and Section 6 concludes the 
paper. In this paper we have discussed power system with non 
uniform damping only. The case of uniform damping being easier 
of the two is omitted and can be found in reference [3]. 

2. Dvnamical Svsteq 

We will study the stability of the following system (la) and (lb). 
The system (1) is an interconnection of m linear subsystems (la) and 
m2 + 2m nonlinear dynamic subsystems (1 b). 
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for k =  l,...,m2+2m 

i , j  = I ,  ..., m 

irk = - Po, + U k + m  

YIJ (Y,-Yl) 1 k = m ( i -  1)+ j and i # j  
Ym (yl),k = m(i - 1) + i 
y , J , ( ~ J ) . k  = m 2 + j  

I 
Ynl (yJ),k = m2 + m + j Y m + k  = i 

m 

where u ,1=-bm w, (0,) - C b l J w I J ( T - 0 , )  
J=l 

JPI 

m 

~ i 2 = b r u ~ m j o ~  + C bnj~nj(oj) 
J=l 

JP1 

x , - x J + p ( z , - z l ) ,  z # j a n d  k = m ( i -  l ) + j  i X,+PZ,> k = m(i - 1) + i 
k = m 2 + j  

k = m2+ m + j 
'J+ "1. U k + m  = i x J + p z J s  

- n = m + l  

- hi, bij are positive constraints 

each of the m2 + 2m nonlinearity yrij(.) lies in some sector - 
Lo&]. 

The system (1) is obtained by using the multiplier (s + p) along with 
the following system (2). It can be shown that the stability of 
system (1) implies the stability of system (2). The use of multipliers 



to enhance the applicability of theorems giving the stability limits for 
nonlinear systems is well known 151. 

t i=  - h i x i - p i l z i + u ,  
i ,  = - h,x, + pi2zi + ui2 

z i =  x i -  x, i = l,..,m 

where 
m 

U,= b,vi,(zi) - b i jv i j ( z i -  zj)  
j-1 

jCi 
m 

3. DissiDative Svste ms and Stab ’lity 

In this section we use the results of the dissipative systems 
theory[4],[5] to arrive at the criterion of stability for the system (1). 
Briefly stated the dissipative theory is used to derive an energy 
storage function, for a given dynamic system, which under certain 
restrictions can be used as a Lyapunov function. The stability 
criteria reported in[4] give conditions on the interconnection of a 
large scale system such that a weighted sum of the subsystem energy 
functions give a Lyapunov function for the overall system. Here we 
do not repeat the various proofs given in [4] and [5 ] ,  instead we 
state only the claim as is relevant to our problem. 

Claiml 
The system (la) is (Q,Si,Ri) dissipative for 

If there exists a sitive definite matrix Pi matrices and W, 
satisfying the foEwing equation (3). The storage function 

O(Zi) = %;Piai. 

P,A,+ A T P , = c ; Q ~ c ~ - L , L T  
P,B = C T ( A ~ D  +sT) - L,W, 

R ~ +  S T D ~  + D T S ~  + D T Q ~ D ~  = w;wi 
Where subsystem (1a)for i = 1. ... m has 

the system matrices [AIBi,Ci,Di] and jr; =[x i  xn, zJ 

Erppf Refer 151. 

aainL4 
If the function fkc) lies in the sector [O,kil, where kiX, then the 
subsystem 

6 =-Bo + U  
k k k  

k =  k( “$ 

ki > -. is(-a. a.P.,o) dissipative, for any ai’” and Pi - 2p 

m e  storage function is ~ ( 0 , )  = 2aipiJ f,(oMo 

1, 1 1 

-Jk 

0 

h f  Refer [SI 

The Claims 1 and 2 give us the storage functions for each m linear 
subsystem (la) and m2 + 2m nonlinear dynamic subsystem (lb) 
respectively. The overall system (1) can be obtained as a linear 
interconnection of 

(i) 
(ii) 

m - linear subsystems (2a), 
m* + 2m nonlinear dynamic subsystems (1 b) 

let yT = [ ~ l . .  ..,~m,~m+1.....ym’+3ml 
uT = tull.ul2,.. .,uml,um2~,+1,...,U,2,3ml 

and U = -Hy specify the linear interconnections to get the 
composite system (1). H is called the interconnection matrix. 

We go through the following steps to check for stability of an 
interconnected system. 

Use Claim 1 to get (Q,Si,Ri) for all the m linear 
subsystems (la). 

Use Claim 2 to get (Q,Si,Ri) for all the m2+2m 
nonlinear dynamic systems (1 b). 

Define 

A .  

A 
A 

Q = h a g  (Q1~. .%~+3m) 

s = diag (Slr...,~m2+3m) 

R = diag (RI, ..., Rm2+3m) 

Using the interconnection matrix H define the matrix Q 
h 

0 = SH + H’k3T-flRH-Q 

and check if 0 is a positive definite matrix. 

If 0 is a positive definite mamx then the system (1) is 
stable 

and 0(d = Cai( Ti) 

is a Lyapunov function. 

m2++3m 

i=l 

If 0 is not a positive definite function start again f” 
Step 1 choosing different set of dissipativity parameters. 

Note that if a subsystem is (Q,Si,Ri) dissipative then it 
is also (al Q,UlSi,aiRi) dissipative for all a w .  

We call a i  the xaling factors. There are no set guidelines to choose 
ai‘s, but we choose them in such a way as to increase the chances of 

being positive definite. One possible choice is to select the scaling 

factors so as to cancel as many as possible off diagonal terms of 0. 
In the next section we see how these results can be used to obtain 
stability regions for power systems. 
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Power Sv- 

In this section we derive the Lyapunov function for a power system 
with transfer conductances and non-unifrom damping. We use the 
formulation of section 2 and the method of section 3 

Using the standard nomenclature [6]  we can represent the ith 
machine of an n-machine system as 

M ji + d i i i  + E iE jY ij[sin (tiij + Oij) 
j=l 

-sin ( 6 , + 8 , ) ] = 0  
for i = 1.2 ..,n. (4) 

Define the state variables as 

A '  
x i =  si  i = l, ... n 

z i L t i , - 6 Z  i = l , . . , m  
m = n -  1 
6, +6, 

The state space representation of system (4) using the above defined 
state variables is 

x i =  - hixi  + u i  

z i =  x i -  X" 

i = 1, ..,m 
X" = - h,x, +U, 

ui=-b , [ s in(z i+6 ,  +Ob)  -sin(6, +e,)] 
- bij[sin (zi  - z j +  6, + D ~ ~ )  -sin (sij + e,)] 

where j-1 
j C i  

m 

u,, = - xb,[sin (zj - (Snj + 0,)) + sin (6, +e,)] 
j-1 

after a simple algebraic manipulation the above set of equations can 
be written as 

x . = - h . x . - p  z + u i l  i = 1 , 2  ,... m 
I 1 I i l i  

n n n  1 2 i  12 

1 1 n  

i = - h  x +p .  z + U .  

z . = x . - x  
(5 )  

where 

u i 2 = b h [ s i n ( z i + 6 ,  + @ , ) - ~ i n ( 6 ~  +e,) -E,zi] 

- bU[sin ( zi  - z + 6, + Qij) - sin (Sij + Qij)] 

uiz=b,[sin(zi-(6, +@,) )+s in(6 ,+  0,) -Ei2zi] 

+ b,[sin (z i  - (6, + 0,)) + sin (Snj + e,)] 

j-1 

j C i  

m 

j=l 

jCi 

where 

O S & , <  1 
0 S E i 2 S 1  

with 

and 

We can see that system (5) is a special case of system (2), where 
Yij(.) are the various sinusoidal nonlinearities. This being the case, 
we now give a step-by-step procedure to construct the Lyapunov 
function of system (5). 

The system matrices for the ith linear subsystem are 

i = 1, ..., m 

- h i  0 -p f i  

C i =  [ l  - 1 p],Di= o 

0 IE,,Ei, c 1 for 

a i g h i + h n  

b i  pa + p i * +  hih, 
c i  A EiZb,hi+ Ei,b,h, let 

then choose Eil, and ~ i 2  such that 

ai2 - 2bi> o 

initial choice can be E i l =  E2 = 0.9 

p = C h i / n  
i=l  

1 p' + hZ, 

> --[ 2( h b + pb - a i  ph - C i) ' E] 
p' + h: 

pi' > =[&' 2( L i b i +  pbi - aiPhi - Ci) '  

such that Pilhn=Pi2hi 

ril, ri2 = 0.1 

Now solve for the symmetric positive definite matrix Pi the mamx 
equation (3). If the matrix equation (3) does not have a solution for 
the chosen value of (rii,riz), we have two options 

(a) 

(b) 

and then solve (3). In the case where equation (3) has a solution, 
the ith subsystem is 

increase the value of (ril~i2) 

increase the value of (Ei1,EO) 

(-.,[.,pa -aipiJ.[  r i r f i  a i r i  3 ) 
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with the storage function 

T 
Oi(xi) = x i p i x i .  

Note that the large values of ril,ri2,&il,Ei2 ensure the satisfaction of 
conditions put by Claim 1. At the same time large values of fi2 and 

ri2 reduce the chance of 0 being positive definite and the larger 
€il,~iz are the more conservative the stability region is, so the idea is 
to keep these parameters as close to zero as possible. 

choose P = 5.0 
E1 = E2 = 0.5 

using the procedure discussed in section 4 we get 

Pi1 = 0.244, Pi2 = 0.270 
r l l  = O.l,r12 = 2.1 
P21 = 0.244 P22 = 0.256 
r21 = 0.1, r22 = 2.2 

1 1 a lp l l  = azPzl = 1.0 a, = -,a2 = - 
P I ,  P 2 ,  

Choose Pi, i = m+l, ..., m2+2m 

ki-m P i =  2p 

where the fi-m() is in the sector (0,ki.m) 

Scaling factors 

Choose clipil = 1 i = l,..-m 

aiPi lbi j  = a,+jPd+j,  j = 1, ..-m,j + i 
aiPilb, = ad+iPd+i 
aiPi2bd = aml+m+iPml+m+i 
aiPilb, = a  

m l + z m + i P m l + 2 m + i  

A 
Form the matrix Q = SH+HTST-HTR - Q as discussed 

in section 3, check whether it is positive definite or note. If yes, 
then step 5 gives the Lyapunov function, if not choose a different set 
of &is, possibly larger than the previous one and restart at step 1. 

If 0 is positive definite the Lyapunov function is given 
by 

Let usconsider a 3-machine system with the following parameters in 
. perumt 

Mi = 0.1, M2 = 0.1, M3 = 4.0 
El, = E2 = E3 = 1.0 

Y12 = 0.05, Y13 = 2.0, Y23 = 2.0 

8'12 = 50, 8O13 = 20,8'23 = -30 

e12 = 40,013 = 20,023 = i o  
k, = 9.5, k2 = 10.0, k3 = 10.5 

with these values we have 

biz = = 0.5, b13 = b23 = 20.0, b31 = b32 = 0.5 

I 0.1836 -0.1697 1.2232 
-0.1697 0.1572 -1.1203 

1.2232 01.1203 8.4888 

1 0.174 -0.168 1.221 
P2= -0.168 0.1619 -1.169 [ 1.221 -1.169 8.995 

With the given values of &is the nonlinearities must lie in the sector 

-3.1763 I ~ 1 - z ~  12.8275 
-1.895 I ZI, I 1.782 
-1.838 I ~2 5 2.005 

The Lyapunov function V is found as reported in Step 5 of the 
previous section. The critical value of V is obtained by minimising it 
over the polygon formed by the above mentioned constraints. 
Numerical optimization gives Vc- = 18.5187 at 

X I  = -51.75, ~2 = -42.23, ~3 = -43.1371 
zl = 1.7820, z2 = 0.1025 

Theregion of stability is given by {zv(g) 
Figure 1 shows the XI-zl cross section of the estimated region of 
stability. 

18.51871 

E i g J  Region of Stability 



5. Conclusion 

A systematic procedure is given to construct a Lyapunov function 
for general n-machine power system with transfer conductances. 
The n-machine system is decomposed into smaller subsystems 2nd 
is first analysed at subsystem level then a composition is done to 

study the overall system stability. This simple method and the use 
of input-output stability concepts to choose suitable multiplier has 
helped in constructing a new Lyapunov function. A numerical 
example demonstrates the procedure. We obtain a region of stability 
using this approach while many previously reported methods could 
not produce any. A proper way to choose the scaling factors will 
help in getting sharper results. 
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