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A New Lyapunov Function for Interconnected Power
Systems

Hemanshu Roy Pota and Peter J. Moylan

Abstract—A new Lyapunov function is constructed for a general
n-machine power system with nonzero transfer conductance. The theory
of dissipative dynamic systems and its modifications are used and the
Lyapunov function construction procedure calls for checking positive
definiteness of a sparse matrix Q. In this note, we report the results only
for the case of nonuniform damping which is more complex than the
uniformly damped system. The procedure is iterative and is guaranteed
to converge for uniform damping but may fail to converge for a very
lightly nonuniformly damped system with strong interconnections. The
Lyapunov function is a quadratic term plus a weighted sum of integrals,
a form not reported before. This is an extension of the previously
reported quadratic Lyapunov function.

1. INTRODUCTION

This note reports a procedure to construct Lyapunov func-
tions for a multimachine power system, with transfer conduc-
tances included, using dissipative systems theory [5] for large-
scale interconnected systems [4]. The test for the existence of a
Lyapunov function consists of checking a sparse matrix O for
positive definiteness. The derived Lyapunov function, a quadratic
term plus a weighted sum of integrals of all the nonlinearities is
of a form not found in the literature to date.

Araki et al. [7] and Jocic et al. [8] derived Lyapunov functions
with only (n — 1) integral terms for an n-machine system. The
method in [7] works only for the uniformly damped power
system. There is an extension of [8] for the nonuniformly damped
system in [9]. The method presented in this note gives a larger
estimate of the region of stability and less restrictive conditions
on system parameters for the existence of a Lyapunov function.
All the attempts to derive a Lyapunov function in the manner of
Aylett, with path independent integral terms, have failed [10],
although there exist some approximate methods [1], [11]. To
obtain better results, we manipulate system equations to get the
stability results for the case where the nonlinearities lie in some
sector [0, k], k = diag(k,) and 0 < k; < 1. This manipulation is
possible because we decompose the system into small subsys-
tems so that the computational requirements increase only lin-
early.

The note is organized as follows. Section II discusses the
problem formulation and Section III introduces the dissipative
systems theory for interconnected systems. Section IV intro-
duces an n-machine power system first and then gives a step-by-
step procedure to construct a Lyapunov function. Section V
demonstrates the procedure using two numerical examples and
Section VI concludes the note. In this note, we have discussed
power systems with nonuniform damping only. The case of
uniform damping being the easier of the two is omitted and can
be found in [3].
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II. DYNAMICAL SYSTEMS

We will study the stability of the following system (1a) and
(1b). The system (1) is an interconnection of m linear subsys-
tems (1a) and m? + 2m nonlinear dynamic subsystems (1b).

The ith linear subsystem is described by the following equa-

tions:
X A; 0 My || X 1 0 u,
’\"n =10 —A" Mi> Xn | +10 1 I:u'l]
: 1 -1 o Jl% 0 oft”
X

y=[1 -1 BIf*|,
2.

i

i=1,- (1a)

,m.

The kth (for k = 1,---,m> + 2m and i,j = 1,--, m) nonlinear
subsystem is described by

O = —Bop + U,y
i (yi—y), k=m(i—1)+jand i #j
Uin(y:) k=m(i—1) +i

(1b)

Ym+k = — 2 4
* U (¥), k=m*+j
U, (3), k= m2+m+j
where
Uy = by, () — X bz,'l/’i,‘(a'. - 0}')
=1
m
up = b, (o) + x b, (o))
=1
Ukim

x;—x;+B(z;—z), i+#jand k=m(i—1)+]

x; + Bz, k=m(i—1)+i

- x; + Bz, k=m?+j
— 2 ;
x; + Bzj, k=m"+m+j

en=m+1

® \;, b;; are positive constraints

e cach of the m* + 2m nonlinearity y,(-) lies in some sector
[0, k].

System (1) is obtained by using the multiplier (s + B) along
with the following system (2), hence, the stability of system (1)
implies the stability of system (2) as shown in [5]. The use of
multipliers to enhance the applicability of theorems which deal
with the stability limits of nonlinear systems is well known [5].

X = NX T paZ T Uy
X.n = _/\nxn + MinZ; + Uipp
I, =x; —X,, i=1,-m (2)

where

uy = —b(z;) - Z bi;‘/’ij(zi - Z,)
=1
i

Up = bni‘/’m,(zi) + Z bnj‘//nj(z,‘)-
Fui
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I11. DISSIPATIVE SYSTEMS AND STABILITY

In this section, we use the rtesults of the dissipative systems
theory [4], [5] to arrive at a criterion of stability for the system
(1). Briefly stated, the dissipative theory is used here to derive an
energy storage function, for a given dynamic system, which
under certain restrictions can be used as a Lyapunov function.
The stability criteria reported in [4] give conditions on the
interconnection of a large scale system such that a weighted sum
of the subsystem energy functions give a Lyapunov function for
the overall system. Here we do not repeat the various proofs
given in [4] and [5], instead we state only the claims that are
relevant to our problem.

Claim 1: The system (1a) is (Q;, S;, R,) dissipative for

S R a;ry 0
Qi=—a, 5= [ B —a; Bzl [ 0 ary |’
if there exists a positive definite matrix P,, matrices L; and W,
satisfying the following equation (3):

P A; +AiTPi = C,»TQ,»C,- - LiLzT
P,B; = C[(A;D; + sy - LW,

R, + SID; + D[S, + D]Q,D; = W' W, 3)

and the storage function for the subsystem is
o(x) = ’x-l?-Pl'x-l'
and the ith subsystem (la) (for i =1,--,m) has the system
matrices [A4,, B;,C;, D;] and %] = [x;, x,, z;).
Proof: Refer to [5].

Remark: There are very simple and direct frequency domain
graphical tests [4] to select (Q;, S;, R;). Here we give a state-space
approach because we need the Lyapunov function as well.

Claim 2: If the function f,(") lies in the sector [0, k;] where
k; > 0, then the subsystem

oy = —Boy Uy

yi = filoy)

is (— a;, @, B;,0) dissipative, for any o; > 0 and B; > Zk—lB

The storage function for the subsystem is é(oy) =

20, B; [5* filo)do.
Proof: Refer to [5].

Claims 1 and 2 give us the storage functions for each of the m
linear subsystem (1a) and m? + 2m nonlinear dynamic subsys-
tem (1b), respectively. The overall system (1) is a linear intercon-
nection of:

i) m-linear subsystems (1a);
i) m2 + 2m nonlinear dynamic subsystems (1b).

Let
yT = [Yl"“7y”:v))m+17"" ym2+3m]

T— “ne e
ul = [ug, Uy s U2y Ui 1 U 3m]

then u = —Hy specifies the linear interconnections to get the
composite system (1). The matrix H is called the interconnec-
tion matrix.

In this section, we derive the Lyapunov function for a power
system with transfer conductances and nonuniform damping. We
use the formulation of Section II and the method of Section III
to derive a Lyapunov function.

Using the standard nomenclature [6] we can represent the ith
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machine of an n-machine system as
n
M +db, + ¥ EEY,[Sin(8; +6,)
=1
{,‘#i
~Sin(82+6,)] =0 for i=1,2,n ()

Define the state variables as

xiési i=1:"n
Ziéain_ai?l i=1,-m
and
m=n-—1
6in & 51' - 5n'

The state-space representation of system (4) using the above
defined state variables is

X, = —ANX; U, i=1,-,m
X, = —Ax, tu,
Z;=x; — X,
where
u; = —by[sin(z; + 85 + 6,) — sin (8, + 6;,)]
m
- Z bij[sin(z,- —z;+ 80+ 6,;) —sin (87 + B,J.)]
Tei
m
u,= -y b,,j[sin(zj — (& - 6,;)) + sin (85 + 0,”)]
j=1
and A, = d,/M,.

After a simple algebraic manipulation, the above set of equa-
tions can be written as

X, = —AX; — Pz vy i=1,2,,m

X, = —)‘nxn + Ki2Zi + U

n
I =x;— X,

)

where

Up = bln[Sin(Zi + 8% + 6,) —sin (8 + 6,,) — (flqzi)]

- f‘,l bi/[sin(z, —z;+ 82+ 6,) —sin (8] + Oij)]
j=
j#i

uy = b,[sin(z; - (85 + 6,)) + sin (85 + 6,) — €22]

ni

m
. 0 . 0
+ Y b,,j[sm (z]- - (6,” + Gn])) + sm(&ni + 0”1)]
j=1
J#i
and o <€, <1,0< €, <1with u, =b;, & and p;; = b,€m-
We can see that system (5) is a special case of system (2)
where ¥, () are the various sinusoidal nonlinearities. This being
the case, we now give a step-by-step procedure to construct a
Lyapunov function for system (5).
Step 1: The system matrices for the ith linear subsystem are,
fori=1,m

—A 0 M 1 0
A;=| 0 -\, Hp 1 Bi=10 1

1 -1 0 0 0

c,=[t -1 Bl, D;=0

for 0 < €, €, <1.
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a; = A+ A,
b & iy + pip + A,
G & €1anl/\1 + €!2bm/\n

then choose €, and €, such that a? — 2b, >0 and (a? —

2b;Xb? — 2a,c;) — ¢? > 0 (initial choice can be ¢, = €, = 0.9)

n
B= Y A/n

i=1
1 B2+ A2 BA, |
> -
P> | S = B) 2(A b, + Bb —a, Bh — ) 2,

and

1 B2+ A BA, |
o> =
P > max 2(A, = B)  2(Ab; + Bb; —a; B — ) 2¢;

such that B, A, = B, A; and r;,r;, = 0.1.
Now solve the matrix equation (3) for the symmetric positive
definite matrix P,. If the matrix equation (3) does not have a

solution for the chosen value of (r,, r,,), we have two options:

a) increase the value of (r;;,r,,);
b) increase the value of (g, €;,);

and then solve (3). In the case where (3) has a solution, the ith
subsystem is

a;r; 0
—a,[a; By — Byl 0

a;li
— dissipative with the storage function
i) = iTP i
(X)) =X, P.X,.

Note that the large values of r,,7,,, €, €;, ensure the satisfac-
tion of conditions put by Claim 1; at the same time large values
of r;, and r,, reduce the chance of 0 being positive definite,
and the larger €, ¢, are the more conservative the stability
region is, so the idea is to keep these parameters as close to zero
as possible.

Step 2: Choose B, i =m + 1,-,m? + 2m, such that

ki—m
2B

where the f;_,.(-) is in the sector (0, k;_,,).
Step 3: Choose

B =

o By =1 i=1,,m
a; 3.‘1sz = Qi Bmi+j»
&; Birbiy = Oy Bris
@ Bibny = A2y i B2
o Biby = 02 am s i Butiam i
Step 4: Form the matrix Q = SH + H'ST — HTRH — Q as
discussed in Section III, check whether it is positive definite or
not. If yes, then Step 5 gives the Lyapunov function. If not,
choose a different set of ¢s, possibly larger than the previous
one and restart at Step 1.
Step 5: If Q is positive definite the Lyapunov function is given

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 37, NO. 8, AUGUST 1992

by

V=Y X'PX+ ¥ Zzakﬁkzbkjfokl/'kj(l")do'
=1
*k

+ X zakﬁktbknf k‘/‘kn(o')do'
k=1 0

+ Z zakﬁkzbnkf k‘llnkl(a)do-
k=1 0

3

Tk
+ Zakﬁkzbnk[ V(o) do.
k=1 0

V. NUMERICAL EXAMPLES

Let us consider two examples to illustrate the method devel-
oped in the note.

a) We first consider a three machine uniformly damped sys-
tem with the following parameters:

M, =001, M,=001, M,=20
E,=E,=E;=10

Y,=01, Y;3=10, Yy=10
8 =5, 8h=02°, 83 =-3°
0, =4° 853=2° 0,=1°
A=40
giving
b, =10, b, =10, b;3=100, b; =05,
b,y = 100, b3;=0.5
where
, _ EEY,
ij M,
choose
€, =€ =¢€=¢ =00
€5 = € = 0.03
B=Ar/2=20
giving
i =be =3, py=bye =3 PBi=pB =73

The Lyapunov function is
V(x) =xi+4x,2,+ 522 +x3+4x,2,+ 523+ (1 —cos z;)

+ 20.0(0.9876 — cos(z; — z, + 0.1570)
—0.1564(z; — z,))
+ 200.0(0.9975 — cos (z; + 0.0698)
—0.015(z7 — 0.0697z,))
+(0.9975 — cos (z, + 0.0698) + 0.0697(z,))
+ 20.0(0.9998 — cos (z; — z, — 0.0174)
—0.0174(z, — z,))
+ 200.0(0.9993 — cos (z, — 0.0349)
—0.015z2 + 0.03482,).

Nonlinearities in this case are sinusoidal and they are in the
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valid sector provided that
-162° <z, —z, < 162°
—180° < z; < 170°
-174° <z, < 182°

the bounds are derived by solving the nonlinear equation as

discussed in a remark in Section IV. Let ()5 denote the region

enclosed by the above set of inequalities and §{} its boundary.
Define

Ve, = min [V(x)].

x€dllg
For this example the numerical optimization gives V., =
397.8155.
The estimate of the region of stability is given by the set Qpg,
where
Qp = {x:V(x) < 397.8155}.

For the sake of comparison we take an example from [7]. All the
parameters are the same as in the above example except A = 5.0
because the method in [7] will not work for € = 0.5 and A = 4.0,
the damping chosen in our example. The estimate of the stability
regions obtained from both these methods are shown in Fig. 1.
The inside region is for the example from [7].

b) Let us consider a three-machine system with nonuniform
damping and the following parameters in per unit:

M, =01, M,=01, M;=40
E,=E,=E,=10
Y, = 005, Y, =20, Yy =20

8, =75, 853=2, 8p= -3
0, =4° 0;3=2° 6,3=1°
A =95, A, =100, A;=105.
With these values we have
by, =by =05, by3=by3 =200, by =by=05.
Choose
B=50
€, =¢€,=05.
Using the procedure discussed in Section IV we get
By = 0.244, B, =0.270
rp =01, r,=21
By = 0244, B,y = 0.256
rp =01, ry=22
L0 1 1
a; By = a; By V=a = B, a = By

Solving the matrix equation (3) with the above parameters, we
have

0.1836 —0.1697 1.2232
P, = | —-0.1697 0.1572  -1.1203
1.2232  01.1203 8.4888
0.174 —-0.168 1.221
P,=|-0.168 0.1619 —1.169}.
1.221 —-1.169 8.995

With the given values of €’s the nonlinearities must lie in the
sector

31763 <z, — z, < 2.8275
—1.895 <z, <1.782
~1.838 < 2, < 2.005.
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Fig. 1. Regions of stability for example (a).

The Lyapunov function ¥ is found as reported in Step 5 of the
previous section. The critical value of V' is obtained by minimiz-
ing it over the polygon formed by the above-mentioned con-
straints. Numerical optimization gives V/,, = 18.5187 at

X, = —5175, x,= —42.23, xy= —43.1371

z, = 1.7820, z, = 0.1025.

The estimate of the region of stability is given by {¥:V'(%) <
18.5187}.

Fig. 2 shows the x; — z; cross section of the estimated region
of stability.

V1. CONCLUSION

A systematic procedure is given to construct a Lyapunov
function for a general n-machine power system with transfer
conductances. The n-machine system is decomposed into smaller
subsystems and is first analyzed at the subsystem level then a
composition is done to study the overall system stability. This
simple method and the use of input—output stability concepts to
choose a suitable multiplier has helped in constructing a new
Lyapunov function. Numerical examples demonstrate the proce-
dure. We obtain an estimate of the region of stability using this
approach while many previously reported methods could not
produce any region.
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Fig. 2. Region of stability for example (b).
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Pole Assignment by State Transition Graph
Hitoshi Katayama and Akira Ichikawa

Abstract—The pole assignment problem is considered using graph
representation of a matrix. The parametrization of controllers which
have a specified characteristic polynomial is given. A simple algorithm
based on graphs is presented and two examples are given.

I. INTRODUCTION

Recently we have introduced a graph called the state transi-
tion graph of a matrix and considered the deadbeat control
probiem [3]. We have shown that a simple algorithm based on
these graphs can generate a large class of deadbeat controllers
[3]. It gives the set of all pointwise minimum-time deadbeat
controllers. We extend the approach of [3] and consider the
parametrization of controllers which assign a given set of
closed-loop poles.

The parametrization of controllers in the pole assignment
problem is important since we can use free parameters for other
purposes such as the selection of eigenvectors or robustness.
This problem has been studied in [1], [2], [4]-[8] in terms of
closed-loop eigenvectors. In [8] the structure of controllers is
explicitly given using all possible Jordan forms of the closed-loop
matrix. In this note we consider the parametrization problem
using the graph representation of a matrix and Mason’s formula
on signal-flow graphs. The algorithm is simple and gives a large
class of controllers for each set of eigenvalues. The free parame-
ters enter linearly in the controller and are convenient to use for
other purposes.

I1. PRELIMINARIES

A. Controllable Canonical Form

Consider the linear time-invariant system

X(t) = Ax(t) + Bu(t), x(0) =x, (1)
or its discrete-time version
x(k + 1) = Ax(k) + Bu(k), x(0) = x, ()

where x € R" is the state vector, u € R™ is the control vector,
and A4, B are matrices of compatible dimensions. We assume
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