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Stability of Locally Dissipative Interconnected 
Systems 

H. R. Pota and P. J. Moylan 

Abstract-This note extends the results of the existing dissipative 
systems theory to include locally dissipative systems. This extension 
enables us to analyze an interconnection of locally dissipative systems. 
The dissipative systems theory has been successful in unifying the 
input-output analysis and the state-space analysis; so far, a “local” 
version of this analysis is missing. In this note we firstly give a definition 
of a locally dissipative system, and then develop results to analyze 
interconnections of these locally dissipative systems. The result has an 
immediate application in studying the power-system transient stability 
problem and can have possible applications in robust system analysis. 

I .  INTRODUCTION 

The two representations-internal or state-space and external 

as a generalization of the small-signal input-output [SI concepts. 
This is similar to the generalization of the finite-gain input- 
output concept by the existing dissipative systems theory. 

The development of the theory in this note is similar to the 
presentation of the interconnection of dissipative systems in [6] 
and the relationship between internal and external stability in 
[8]. Section I1 gives the basic notations and definitions. Section 
111 discusses the locally dissipative systems, and establishes some 
necessary results on which can be built the structure to study an 
interconnection of these local dissipative systems. Section IV 
gives the main result of this note; first it connects the local 
dissipativity with the local internal stability, and secondly, it 
states as to when an interconnection of these locally dissipative 
systems is internally stable along with a procedure to get an 
estimate of the region of stability. Section V, states the conclu- 
sions that can be drawn from the work done so far. 

11. NOTATION AND DEFINITIONS 

Let U be an innerproduct space whose elements are functions 
(.): R - R. Also let U” be the space of n-tuples (column 
vectors) over U ,  with inner product 

n 

( u , u >  = ( U , > U , > .  
1 =  1 

Then for any U E U” and any T E R ,  a truncation u7 can be 
defined via 

for t < T 
otherwise. 

or input-output-of dynamical systems are widely used for 
stability analysis and controller design. Depending on the situa- 

It is also useful to speak of a “truncated inner product” 

tion, either one can be useful, so attempts [l] have been made to ( U ,  u ) 7  = ( u 7 ,  U T ) .  

transfer analysis done on one representation to another. The 
analysis in [1] is for the case where all the properties hold 
globally. In [SI, an attempt is made to do the same for systems 
where the required properties hold only locally. Unfortunately 
the analysis in [SI is not very helpful when we intend to analyze 
an interconnection of these locally stable systems (individual 
generators) where we wish to know about the stability properties 
of the overall system. 

The dissipativity systems theory [2], [7]-[9], [ 131, [6], provides a 
nice framework to unify the results obtained in these two- 
input-output and state-space-seemingly different settings. In 
[14], results are reported that use the passivity framework (a 
special case of the dissipative framework) to unify various results 
in the area of stabilization of nonlinear systems. In this note, an 
attempt is made to extend the dissipative systems theory to 
include locally dissipative systems; with a view to analyzing the 
locally dissipative interconnected systems. Locally dissipative 
systems can be thought of as input-output representation ana- 
log of the local state-space theory. An important contribution of 
this note is in obtaining stability results for the interconnection 
of locally dissipative systems. This extension has been facilitated 
by a careful definition of the “local” concepts, which can be seen 
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Finally, let us define an extended space U: = {ulu, E U“ for all 
T E R } .  

A system with m inputs and p outputs may now be formally 
defined as a relation on Uem X U:; that is, a set of pairs 
( U  E Uem,y E U:), where U is an input and y the corresponding 
output. For the present, we assume that there exists a state 
space X for the dynamic system, and we need no more informa- 
tion than that. A formal definition of the state space X is given 
in [6]. 

Definition 1: A dynamical system is locally (Q ,  S, RI-dissipative 
in a region 0 & X, if 

V u  E U, and T E R + ,  such that x(0) = 0 and x(t) E R for 
0 I t I T .  Q E RP’P, S E R p x m ,  and R E R m x m  are constant 
matrices; w(u,  y )  is called the supply rate and is given by 

w ( u , y )  = y T @  + 2y‘Su + U’RU 

we sometimes also say that the system is dissipative with respect 
to (wrt) supply rate w ( u ,  y). 

There are some standard methods to get the (Q,  S ,  R )  matri- 
ces such that the system is (Q ,  S, R)-dissipative. The derivation 
of the dissipativity parameters for linear systems is discussed in 
[2], and a general discussion for the nonlinear case is given in 171. 
Examples of systems for which the dissipativity parameters are 
derived using the above-cited references are given in [11] and 
1121. 
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To proceed further, we need the notation: 

U ( t o , t , , x , , x , )  6 { U  E U,: x ( t , ) = x , , x ( t , )  

= x , , x ( t )  E n,to I t I t , } .  

U(to,  f,, xo, x,) denotes all the inputs belonging to the extended 
space U,, taking the state from xo to x,, and keeping it in a 
specified region R for the entire duration [ to ,  t , ] .  Concatenation 
of two inputs u0 E U(to, t , ,  xo, x,) and ul  E U(t l ,  t , ,  x,, x,) is 
defined as 

u o ( t )  for to I t I t ,  

u , ( t )  t 2 t , .  
u 0 o u 1  = 

The concatenation uo 0 u1 might not be continuous, but the state 
transition due to this control is. 

Definition 2: A state x1 E R is said to be locally reachable wrt 
R from xo E R at time t ,  if 3to I t , ,  such that U(fo, f,, xo, x,) 
is nonempty. A dynamical system is said to be locally reachable 
wrt R, in a region 0, c R, if every state x, E R, is locally 
reachable with respect to R from the origin V t ,  E R .  A dynami- 
cal system is said to be locally connected wrt R, in a region 
0, 0, if any x, E R, is locally reachable wrt R from any 
other x, E R,, V t ,  E R .  

Definition 3: A function +: R X R + R is called a storage 
function, for any given Q E RPXP, S E R p x m ,  and R E R m X m ,  
if it satisfies +(O, t )  = 0, V t  and 

V t ,  2 to, U E U(t,, t , ,  xo, x,), +(x, t )  2 0, Vx E R, and all t E 
R .  

Further to the general definition of the storage function we 
introduce two special storage functions to be used later: 

i) Required supply as 

+ r ( x , , t l >  = inf J " w ( u , y ) d r .  ( 2 )  
u ~ U ( t o , t l , O , ~ l )  t o  

> t o ,  f o ~  [ -  E, 111 

ii) Available supply as 

+ a a ( X o > t O )  = - inf ( ' w ( u ,  y )  dt.  (3) 
U E U ( t o , 1 1 , ~ " ,  X I )  

1 ,  2 10, f I  E [ t o ,  ml, x ,  E a 

111. LQCALLY DISSIPATIVE SYSTEMS 

Lemma 1: Let the dynamical system be locally connected in a 

i) The system is locally (Q ,  S, R)-dissipative in the region R 

+ ( x , t ) :  R, X R + R ,  

ii) The system is locally (Q, S, RI-dissipative in the region R, 

+ ( x , t ) :  0, X R -+ R ,  

region R, wrt R: 

only if there exists a storage function 

0 I + ( x , t )  5 m, Vx E R,. 

if there exists a storage function 

0 I + ( x , t )  5 m, Vx E a,. 
Note that when R = R,, i) and ii) can be combined and stated 
as: the system is locally (Q, S, R)-dissipative in a region R if, 
and only if, there exists a storage function 

+ ( x , t ) :  R X R + R ,  

Proofi 
0 I + ( x , t )  < 00, Vx E R.  

i) We will show that when the system is (Q ,  S, R)-dissipative, 
then the required supply &(x?, t , ) ,  as defined by (2), is a storage 

+ r ( x , , t l )  = inf j " w ( u , y ) d t .  

The infimum in the above case may not take place on a U E 

U(to, t l ,O ,  x,), but it is still true that given any E > 0, 3t, E R ,  
U ,  E U(to,  t , ,O,  x,), such that 

U E  U ( t O , t , , O , X , )  10 

I1 > t o ,  t o €  [ -m,  111 

I : ' w ( u m >  y >  dt - + r ( x O ,  to)  < E .  

Then (4) becomes V u  E U(to, t , ,  0, x2) 

+ r ( X , , t , )  I 4 A X 0 , t O )  + E + J f Z w ( U l j Y ) d l  
f l  

This is true V E  > 0, giving the desired result 

ii) We have 4(O,t) = 0, V t  2 0, and from the definition of 
the storage function given by (1) we can write 

p V ( U , Y )  dt 2 + ( x , , t , )  2 0, vu E U(O,t,,O, X I )  

implying local (Q, S, R)-dissipativity in a region 0,. 
Lemma 2: Let a dynamical system, locally connected in a 

region 0, wrt R, be locally (Q, S, RI-dissipative in the region 
R, and let +(., . ) be one of its storage functions. Then 

0 5 + a ( X , , t o )  5 +(xo , to )  I + A X O , t " ) ,  vxo E 0,. 

Pro08 For any storage function 4: 0, X R + R ,  we have 
V U  E U ( t , , t , , x o , x , )  

4(%, t o )  + J f W , Y )  dt 2 +(x,, t*> 
10 

so when xo = 0, we get from above 

4 J r ( X , 7 t l )  2 + ( X l > t l ) .  ( 5 )  
Again, we have V u  E U(to, t , ,  x,, x,) 

+(xo, t o )  2 + ( X I >  t l )  - j r ' w ( u , Y )  dt 
f0 

giving +bo, t o )  2 +(x,, t , )  + +Jx0, t o )  and since 4 ( x l ,  t l>  2 0, 
we have 

+aa(xa> t o )  I N X O ?  to) .  (6) 

Combining ( 5 )  and (61, we have 

0 I + a ( X , , t , )  < + ( X O > t O )  I + r ( X o 7 f o ) .  
vxo E 0,. 

Definition 4: A dynamical system is said to be locally uniformly 
controllable at xo E int(R), if there exists an open neighbor- 
hood BE of xo, such that for any x, E BE, there exist choices of 
u E U, and t , ,  such that the state can be driven from x( to )  = x ,  
to x ( t , )  = x,. M t )  E R, tn I t I t , }  with the additional prop- 
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erty that 

for some continuous function p :  R + +  R + ,  such that p ( 0 )  = 0. 
The dynamical system is said to be locally uniformly controllable 
in R if it is locally uniformly controllable at every state x o  E 

int( 0 1. 
Lemma 3: Let a dynamical system be locally uniformly con- 

trollable in a region R 2 X .  Then any storage function that 
exists Vx E R is also continuous. 

Prooj5 Consider some arbitrary state xi) E int(R) and let 
the storage function be +(., . 1. Then for any x ,  in the ncighbor- 
hood B, of x , ,  we have V u  E U t , , ,  t , ,  x,, ,  x , )  

4 ( X , l > t , ) )  + j i l w ( u , y ) d t  I 4 ( X l > f , )  
'I1 

implying 14(xl, t , )  - +(xi), t J  I p(llx, - x,J). The arbitrary 
choice of x ,  and continuity of p ( . )  give that b ( . )  is continuous 
at xo,Vx, E int(R). 

Definition 5: A dynamical system is said to be locally zero state 
detectable in a region 0, wrt (1, if for any x , )  E (Il, x, )  # 0, 
such that x ( t )  E R, for 0 I t I 6 ,  for some 6 > 0, with U ( . )  = 0, 
there exists a continuous function a :  R + R with a(0)  = 0 and 
a ( a )  > 0, Vu > 0, such that 

for some finite T such that 0 I T 5 6. If, in addition, for any 
sequence {a,} E R, a(un) + x as ~ ~ q f l ~  + E, the system is called 
locally uniformly zero state detectable in 0, wrt R. 

Definition 6: A dynamical system is said to have a property A 
if there exists a well-defined feedback law U * ( . )  such that 
w ( u * ( . ) , y )  < 0, Vy # 0, u*(0) = 0 and U* E U(t,,,  t , ,  xi), x , ) .  

Lemma 4: Let the dynamical system be as follows: 

i) Locally ((2, S, RI-dissipative in a region f1 c X .  
ii) Locally uniformly controllable in a region (I,, ,  wrt (1. 
iii) Locally uniformly zero state detectable in region Rz wrt 

n. 
Suppose, also, that the region a, A RI,, n R; is a nonempty 
region. Then the dynamical system has all its storage functions 
+: {I5 X R -+ R continuous, 4(0) = 0 and 4 ( x )  > 0, Vx E ( I , ,  
x # 0. If, in addition, the system is locally uniformly zero state 
detectable in a region R, wrt R, then for any sequence {x,J E 

R,, 4 ( x J  + = as Ilx,,ll + x. 
Proof Lemma 3 gives the continuity. Local zero state de- 

tectability gives +<Jx,)) > 0, Vx, E al, xil # 0 and 4,(0) = 0. 
This, with the fact that 

0 5 4 a ( ~ u r t n )  I 4(xn,to) I 4 r ( x o , t i i ) ,  vxil E 

gives the above result. From the definition of local uniform zero 
state detectability, it is clear that for any sequence {x , , }  E R,  

We have been fixing conditions on the dynamic system and 
the storage function so that can be used as a Lyapunov 
function candidate [3]. In the following claim, we show that the 
storage function $(.) can also be used to get a region of stability 
in addition to proving the local stability of the origin of thc state 
space. We use compactness argument in the following claim to 
assure the existence of a minimum, so we assume that the metric 
1 . 1  on the state space X is normable and 1 1 . 1 1  is the metric- 
induced norm. Let dA denote the boundary of a set A [4]. 

4 ( x J  + x as llx,fll ---* =. 

Claim 1: Let 4: R c R" + R +  be continuous with the addi- 
tional property that 

i) +(O) = 0 and 4 ( x )  > 0, Vx E dR.  
ii) For any sequence {x , , }  E R,, 4 ( x , )  + x as I l ~ , ~ l l  + x. 

Then, there exists a subset R E R defined by { x  E R: + ( x )  I c} 
such that 4 ( x )  = c, Vx  E dR. 

Prooj5 Choose any xi) E d R ,  let c, = + ( x u ) .  Define R I  A 
{ x  E R: 4 ( x )  I c,} and let c = minrEaRf4(x)}.  The minimum 
exists because dR, is compact and it is closed by definition. The 
set dR,  is bounded, because if not, there would exist a sequence 
{x,J E dR, such that Ilx,ll + x, implying that 4 ( x , )  + cz. on 
dR,, which is a contradiction. Moreover, c > 0, because + ( x )  > 
0, Vx E d n .  Define R 2  6 ( x :  4 ( x )  I c} and R R ,  n R,. Our 
claim is that c#Ax) = c, Vx E dR. Suppose the contrary is true, 
i.e., 3 x , ,  E dR such that 4(xl)) # e. By continuity of 4,  4(xl)) > 
c' is impossible because x g  is the limit of the sequence in R and 
I c, Vx in the sequence. Therefore 4 ( x )  I c. By continu- 

ity again, 3 an open neighborhood of xi) such that 4 ( x )  I c in 
the neighborhood, which implies that xi) E dR,. Therefore x ,  E 

dR,, which is in contradiction with the definition of c. 
For our next result, we need the following. 
Local Existence and Uniqueness Theorem 131: Let a system of 

differential equation bc given by 

X = f ( x , t ) ,  x E R", f: R " + '  + R". 

Assume that the function f' is continuous in t and x .  Let B be a 
ball in R" of the form, B ( x  E R": IIx - xoll I r}.  Assume 
that 3 finite constants T ,  r ,  h ,  k such that 

l I f ( t ,  x )  - f ( f ,  v)ll I kllx - yll, 

Vx, y E B ,  V t  E [O, t ]  (7) 

l l f ( f ,  xn)ll I h ,  Vt  E 10, t l .  (8) 
Then, the system has exactly one solution over [O, 61 whenever 
h 6  cxp(k6) I r and 

for some constant p < 1. MoreoveI 

lIx(t) -xi)ll ~ h S e x p ( k t )  ~ r ,  V t  E [0,6]. 

IV. MAIN RESULTS 

First, we will fix conditions on the system and its local proper- 

Theorem 1: Let the dynamical system 

i )  Be locally ((2, S, R)-dissipative in a region R 
ii) Be locally connected in a region R, wrt R. 
iii) Be locally uniformly controllable in a region Rfrc wrt 0. 
iv) Be locally uniformly zero state detectable in region R, 

wrt R. 
v) Be locally Lipschitz continuous in the region R. 
vi) Have the property A .  

Furthermore, suppose that the rcgion R,  

ties such that it is internally stable. 

X .  

R, n R,, n R, 
is nonempty, in the sense that it contains an open neighborhood 
of the origin. Then, if Q is negative definite, the origin is 
asymptotically stable. 

Proo$ Lemma 1 - 34: 0,. + R such that, V u  E 

m,,, [ I ,  xu, X I )  

4 ( x l l ,  h )  + i i ' w ( u ,  Y> dt I 4 ( x l ,  t , ) .  
11 
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Lemma 3 * +: RUC + R is continuous. Using this and the 
Claim 1, define R ( x  E R,: +(XI I c )  and for some small 
E > 0, R ,  2 ( x  E R: + ( x )  I c - E ) ,  where c is as given in 
Claim 1. 

Let h(x,)  and k ( x J  be the Lipschitz constants at xo as given 
in (7) and (8). Define h* 2 maxxo,.!h(x0)) and k* 
maxx0 R j k ( x o ) ) .  R ,  is compact, so the maxima exist and are 
finite by definition. Because h*, k*  are finite, we have that there 
exists a finite 6 *  such that h*S* exp ( k * S * )  = E ,  where clearly 
6* > 0. This, and the local existence and uniqueness theorem 
gives that I(x(t)  - xoll I E ,  V t  E [O, a*]. This means that VX, E 
R, ,  x ( t )  E R ,  V t  E [O, 6* ] .  So we have, when U = 0 

+ ( x ( t ) )  - + ( x ( t o ) )  I l ‘ y t @ d t ,  to  I t I to + a *  
f a  

Q is negative definite giving +(x( t ) )  I +(x(t ,)) ,  to I t I to + 
6 * ,  we can repeat the above argument again with xo = x( t ,  + 
6*),  so we have 4 ( x ( t ) )  I +(x( to) ) ,  V t  2 to. Because of the 
local uniform zero state detectability, we have + ( x ( t , ) )  I 
+(x( t , ) ) ,  for some to,  t ,  > 0, whenever x( t , )  f 0. Lower bound 
is given by local uniform controllability assumption. Clearly +(.) 
is a Lyapunov function for the system. 

Remark 1: The proof proceeds more or less on the standard 
lines as in [61. The difference is only in the fact that here we 
need only a local description as opposed to the global needed 
elsewhere. 

Remark 2: We need Lipschitz continuity arguments to assure 
that the system trajectory, if started in a subset of R, remains in 
R for a finite time, irrespective of the system stability. A proof 
of this statement can be found in 131. This helps to straighten the 
circular argument in [5]. 

Remark 3: In proving the above theorem, we have also given 
an estimate of the region of stability R .  

The next theorem refers to a linear interconnection of N 
locally dissipative subsystems. The interconnection is described 
by 

N 

U, = U , ,  - H,,yl ,  i = 1;.. , n  (9) 
I =  1 

where U, is the input to subsystem i; y ,  is the output; U,, is an 
external input; and H,, are constant matrices. A compact matrix 
notation is, with obvious definitions 

U = U, - Hy.  

Theorem 2: Let the dynamical system be formed by intercon- 
necting N subsystems via the interconnection (9) and suppose 
that: 

i) The ith subsystem is locally (Q,, S,, R,)-dissipative in a 
region R, satisfying conditions i)-vi) of Theorem 1. 

ii) The interconnection (9) is such that the dynamic system 
state space X equal to the Cartesian product of the state space 
of the individual subsystems and R = R, X ... X R N  is a 
?onempty region containing a neighborhood of the origin (fl G 
X I .  

iii) The overall system is uniformly zero state detectable in a 
region R, wrt R, where R, is a n:nempty region containing a 
neighborhood of the origin (R, 

iv) The overall system is locally Lipschitz continuous in R. 
Then if Q is positive definite, the origin is asymptotically 

X ) .  

stable. Where 

Q = SH + HTST - H T  W - Q  

Q = (el,..., Q N } ,  S = (S,;.., S N } ,  R { R I , . . . ,  R N } .  

Proo$ For each subsystem we have, by Lemma 1, V u ,  E 

Y(to, t i ,  x,(t , ) ,  x, ( t , ) )  

+ , [ x , ( t o ) ~  + / “ ~ , ( ~ , , Y , )  dt 2 +,[x , ( t , )17  
f n  

i 1, ... ,N ,  V t ,  2 to. 
Now let 

N 

V ( x >  = c +z(xt). 
I =  1 

By Lemma 4 and the local uniform zero state detectability of 
each subsystem, we have V ( x )  > 0, Vx E R, x f 0, V(0) = 0, 
and for any sequence (x,J E R, V ( x , )  + as Ilx,ll + W. Define 
R ,  ( x  E R: V ( x )  I c - E ) ,  where c is obtained by applying 
Claim 1 on V(x) .  R ,  is a compact set. Repeating the arguments 
in Theorem 1 based on Lipschitz continuity, it can be shown that 
V ( x )  is a Lyapunov function as per the definition in [6], such 
that 

V [ x ( t o ) l  + / f ’ Y ‘ e v d t  2 V [ x ( t , ) ] ,  V t ,  2 t ,  
t u  

provided x ( t o )  E R , .  
Remark 4: The above two theorems, when put together, give a 

method of constructing Lyapunov functions for an intercon- 
nected system. Following is a step-by-step method to get a 
Lyapunov function. 

Step 1) Decompose a large-scale system into N subsystems. 
Step 2) Find out the storage function +,(x,) ,  and the corre- 

sponding (Q,, S,, R , )  for each subsystem, using methods dis- 
cussed in [7] and [lo]. 

Step 3) Form the matrix Q = SH +*HTST - HTRH - Q and 
check for its positive definiteness. If Q is positive definite then 

N 

V ( x )  = c + , ( X A  
r = l  

is a Lyapunov function. If Q is not positive definite, then it 
becomes necessary to try another decomposition or a different 
choice of (Q,,  S,, R , ) .  

The above three steps are successfully used to construct 
Lyapunov functions for large power systems in [10]-[12]. 

IV. CONCLUSION 

The main result stated as Theorem 2 is just the type of result 
we need to study the behavior of an interconnected system 
whose subsystems are only ‘‘locally’’ defined. To obtain the 
result, we have made precise what is “locally” required of the 
subsystems. If the definitions are read carefully, one can see that 
“local” is both in term of small gain inputs [5] and local internal 
stability regions. Hence, this note can be considered as a contri- 
bution in extending the already-available results of [I], [5], and 
[SI. This extension has an immediate application for transient 
stability analysis of power systems [10]-[12]. 
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Lower Bounds for the Trace of the Solution of the 
Discrete Algebraic Riccati Equation 

Sang Woo Kim, PooGyeon Park, and Wook Hyun Kwon 

Absfracf-This note suggests two lower bounds for the trace of the 
solution of the discrete algebraic Riccati equation (DARE). It is shown 
that in many cases, the trace hounds of this note are tighter than those 
in the literature and greater than the trace of the state weighting matrix 
even when the system matrix is singular. The results are illustrated 
through an example. 

I. INTRODUCTION 

Riccati and Lyapunov equations play a fundamental role in 

Some additional results on the trace bounds for the solution of 
the discrete algebraic Riccati equation have been recently re- 
ported in [1]-[SI. The lower bounds of the trace of Garloff [2] 
and Mori et al. [3] are trivially the trace of the state weighting 
matrix Q when the system matrix A is singular. This note is 
concerned with nontrivial trace bounds even when the system 
matrix A is singular. It is shown that the trace bounds of this 
note are always tighter than those of Garloff [2]. It is also shown 
that these bounds are tighter than those of Mori et al. [3] when 
the system matrix A is singular. 

This note is organized as follows. In Section 11, several nota- 
tions and preliminary facts are introduced. The main results are 
presented in Section 111, and comparisons of the trace bounds of 
this note with those of Garloff [2] and Mori et al. [3] are made in 
Section IV. Finally, conclusions are in Section V. 

11. PRELIMINARIES 

We define several notations as follows: 

the set of real n x r matrices, 
I ,  the identity matrix of order r ,  
t r ( X )  the trace of a matrix X E R“’“, and 
A , ( X )  the ith eigenvalue of a matrix X E R”’”. 

The eigenvalues of X E R”’” are assumed to be arranged in 

R l l X ‘  

decreasing order, i.e., 

lA , (X) l  2 IA2(X)l  2 ... 2 IA,(X)l. 

Now, we consider the discrete algebraic Riccati equation 
(DARE) such as: 

ATPA - P - ATPB(I ,  + BTPB)-’BTPA + Q = o (2.1) 

where A ,  P ,  and Q E R”’“, B E RnX‘; Q is positive semidefi- 
nite; ( A ,  B,Q’/’)  is minimal; and the superscript T means 
transposition. A lower bound for the minimum eigenvalue of the 
solution P of DARE (2.1) is known to be as follows [4]: 

A,(P) 2 M (2.2) 

where M is defined as 

(2.3) 
M P  2 U Q )  

J K 2  + 4A,(BBT)A,(Q) + K 
_ _  ~~ 

various areas of engineering problems such as control or filter- 
ing problems, in which it is often necessary to solve Lyapunov or 
Riccati equations. Since the computation of the solution causes 

and K is given by 

K P 1 - A,(BBT)A, (Q)  - A,(A%). (2.4) 
some difficulty when the dimensions of the matrices involved are 
large, it is very helpful to obtain several handy bounds such as 
bounds for the trace, the eigenvalues (especially the minimum 
and maximum ones), the determinant, etc. During the last two 
decades, much research was carried out to find these bounds 

It is noted that the lower bound of the minimum eigen- 
value of the solution P is zero if the minimum eigenvalue of the 
matrix is zero, The above facts will be used to prove main 

for the solutions of the discrete and continuous Riccati and 111. MAIN RESULTS 

In this section, we consider DARE (2.1). It is well known that, 
under the assumptions made in Section 11, DARE (2.1) always 
has a unique solution P ,  which is symmetric and positive defi- 
nitc. The following theorem gives a lower bound on the trace of 

Lyapunov equations [ l ] .  Among them, the trace bounds are 
important since they give a “mean size” of the solution, i.e., 
t r (P) /n  is the arithmetic mean of the eigenvalues of P ,  where 
t r ( P )  denotes the trace of an n-dimensional square matrix P. 

the solution P ofDARE (2.:). 

the following relation: 
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