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Subject to the condition R(r,) < 1, which implies that the matrix (I - 
is nonnegative, the following inequality is derived from (36): 

~ l l ~ r ~ l l ~ ~ ~ ~ ~ - ~ r ~ ~ ’ ~ l l ~ ~ ~ ~ l l ~ ~ ~  (37) 

Condition 2 of the theorem ensures that inequality (37) holds true  for all 
truncations 0 6 T Q 03 and thus bounds the total variation of the 
nonlinear response with respect to  the total variation of the linearized 
system’s response. Provided that the linearized system is stable, its 
response to bounded inputs with finite total variation (Le., inputs which 
converge to a set-level, such as step inputs) exhibits finite total variation. 
Consequently ( I l j L l l  ,) is finite and from (37) (11j111) is also finite. This 
proves the existence of nonoscillatory equilibria for  the nonlinear system 
in response to bounded inputs with finite total variation. In order  to 
complete the proof, we must show that any motion, which is caused by 
some initial perturbation from an equilibrium point, converges to  the same 
equilibrium point. 

Let y* denote any nonoscillatory equilibrium point for the nonlinear 
system. As such, y* satisfies the loop equation: 

y* =yf - SE@*) (38) 

where fi is the corresponding linearized system’s equilibrium. Subtract- 
ing (38) from (22) gives: 

Y - Y * = Y L - y L * - S I E @ ) - E ~ ) J .  (39) 

Taking norms in and invoking the condition lim,+- R(r,) < 1, it is 
easily shown that: 

( ~ ~ ~ - ~ ~ ~ ~ , ) ~ ( ~ - r ~ ) - l ( ~ ~ ~ L - ~ ~ ~ ~ l ) .  (40) 

Since the linearized system is assumed stable, any motion yL(r) that is 
caused by some initial perturbation from its equilibrium yz converges to 
y?, and therefore (IlyL - y;llI) is finite. Inequality (40) ensures that the 
same argument applies to the corresponding nonlinear system’s equilib- 
rium point y*. Consequently, the conditions of Theorem 2 imply the 
asymptotic stability of any given equilibrium state of the nonlinear 
system. A controllability and observability requirement can be imposed 
on Q so as  to exclude the possbility of unstable system states that are 
unobservable at the output. 

The practical importance of Theorem 2 lies in that it ensures the 
absence of limit cycling phenomena in the response of the nonlinear 
system to inputs that exhibit finite total variation (e.g., step inputs). 

CONCLUDING REMARKS 

The absolute stability criteria for multivariable nonlinear feedback 
systems that have been described in this paper, are easily verified 
conditions which involve the linearized system’s “absolute gain,” (IISllm) 
and the static or incremental gain matrices (6 or (I?) of the nonlinear 
error function E( .) = N(.) - L .  The practical importance of the results 
lies in their dependence on the stability and the performance of the 
linearized system which often is the design objective in linearization- 
based design methods for nonlinear systems [3]. 

A direct comparison between the previous absolute stability criteria and 
well-known stability criteria such as the small gain theorem 151, [6], or 
frequency domain criteria such as Popov’s criterion and the circle criteria 
[7], [SI, would be rather unproductive as different stability criteria depend 
on different descriptions of the linear  and nonlinear parts of the system. 
Furthermore, Theorem 2 is a stronger asymptotic stability criterion in that 
it ensures the asymptotic stability of any equilibrium state of the nonlinear 
system. However, a comparison between the stability criterion of 
Theorem 1 and the frequency domain stability criteria is possible on the 
basis that, like Theorem 1, the latter ensure the asymptotic stability of the 
system’s zero equilibrium solution only; referred to as the “autonomous 
system.” In this context, a disadvantage of Theorem 1 lies in the fact that 
the “absolute gain” matrix ( ~ ~ S ~ ~ ~ ) ,  which is involved in the matrix L, is 
a rather conservative description of the linearized system’s properties. In 

contrast, frequency domain absolute stability criteria employ the  more 
descriptive frequency response of the linear system and therefore,  it is 
reasonable to expect the latter to be less conservative than the conditions 
of Theorem 1. 

Nevertheless, the practical advantages of Theorem 1, as well as 
Theorem 2, lie in the computational simplicity with which the asymptotic 
stability properties of multivariable nonlinear systems can be verified, and 
their direct applicability to  the time domain analysis and design of 
nonlinear systems via linearization. 
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Lyapunov Function for Power System  with  Transfer 
Conductances 

HEMANSHU ROY POTA AND PETER J. MOYLAN 

Abstract-A method is given for deriving a Lyapunov function for a 
two-machine power system with nonzero transfer conductances. The 
assumptions required are only mildly restrictive and  are likely to be 
satisfied for practical values of machine parameters. The method shows 
promise for extension to systems of more  than two machines. 

I. INTRODUCTION 

This note gives a systematic procedure for deriving a quadratic 
Lyapunov function for a two-machine system with transfer conductance. 
The approach is based on the stability results given in [l 1 J, for large-scale 
interconnected systems, using dissipative systems theory [lo], [ 121. This 
derivation is seen as one of  the building blocks in a systematic procedure 
to  derive a Lyapunov function, using a decomposition approach, for a 
general multimachine system including transfer conductances. 

Researchers have been looking into direct methods of power system 
transient stability analysis for the last twenty years [16]. Direct methods 
not only save a lot in computer time, but also provide a deeper insight 
(compared to the step-by-step method) into transient stability behavior 
~ 7 1 .  
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Willems [ l ]  has given a systematic procedure to  derive all known 
Lyapunov functions for a multimachine system, excluding transfer 
conductances. Systems with transfer conductance can be thought as one 
step higher in complexity. It is tempting to try to generalize all these 
Lyapunov functions for system with transfer conductance. Unfortunately, 
all the attempts to derive a Lyapunov function in the manner of Aylett, 
with path independent integral terms, have failed [9], although there exist 
some approximate [SI, [9] and numerical methods [7l. The reasons for 
this failure, which are well discussed in [3], 141, 191, do not rule out the 
possibility of finding a good quadratic Lyapunov function. In this note we 
show how to find such a function. 

Jokic et al. [I31 developed a general procedure to derive Lyapunov 
functions for a multimachine system using a decomposition-aggregation 
technique (transfer conductance included). Araki [ 151, using an approach 
based on [14], improved upon [13]. Both of these methods give valid 
Lyapunov functions only when the damping is uniform and large. The 
method in 1131 appears not to work for any practical value of damping 
coefficient. The  procedure given in this note will give valid Lyapunov 
functions for most practical values of the damping coefficient. 

Section II of this note gives the system model and the chosen 
decomposition. Section III outlines a procedure to choose the dissipative- 
ness parameters. Section N establishes the Lyapunov function validity. 
Section V contains a numerical example. 

n. SYSTEM MODEL 

The differential equation describing the motion of  the ith machine in a 
multimachine power system is given by 

d26- d6. " 
M i L + d , L = P m i - P e i = Z  

j = l  
dt2 dt E,E~Y,[s~~ 

j # i  

-sin(6ij+e,i)l i= 1, 2, - .  ., n. 
Nomenclature is the same as in 191. 

We decompose the two-machine system into three subsystems. 
Subsystem 1: 

[;I = -OX2 - 1  :I[;] 0 + [; 0 0  q [:;I 

The system transfer function is 
r 

Subsystem 2: (Mernoryless) 

y2= sin (u3+& +O,,)-sin (se+e,d. 

Subsystem 3: (Memoryless) 

y 3 =  sin (u4- +old )+  sin (s:, +e,,,). 

The interconnection relation represented in matrix form is 

u l B  -b12{sin ( ~ ~ + s ~ ~ + e ~ ~ ) -  sin (6:,+el2)1 

~ ~ P b ~ ~ { s i n  (x3-(6; ,+e,d)+ sin (a'A+e,d) 

III. DISSPATIVENESS PARAMETERS 

Our approach to deriving a Lyapunov function is based on  the stability 
theory of [lo]-[12]. In particular, we use the main stability theorems of 
[ 111, which show how to generate a Lyapunov function provided that each 
subsystem has a property called (Q, S, R)  dissipativeness. To apply those 
results, we must find for the ith subsystem, matrices Qi, S,, and R, such 
that the subsystem is (Qi, Si, Ri) dissipative. The choice of matrices is not 
unique, and a certain amount of trial and error was needed before settling 
on the choice shown below. 

Definition: A system is (Q, S, R) dissipative if 

J: ~ v ' ( t ) ~ y ( t ) + 2 y ' ( t ) ~ u ( r ) +  u'(t)Ru(r))dt 2 o 

whenever x(0) = 0, for dl admissible inputs u and vT 2 0. 
Theorem I :  Subsystem 1 is 

dissipative, provided 

for any aI > 0. 

Proof: Theorems 11 and 12  of [I81 are used. 

M(jw) = G*(jw)QG(jw) + G*(jw)S+ SrGUw) + R 

Mow) 2 0, Vw, for the above choice of parameters. 
The system is stable, if the feedback law is, 

u= -Ky, where k= 1 2 I , kl >o sufficiently s d .  

Theorems 11 and 12 of [IS] are satisfied, hence the proof. 
Subsystems 2 and 3 are memoryless conic nonlinearities. For ct2, a3 > 

0, subsystem 2 is (- aZ, a2 (a1 + b1)/2,  - a2nlb1) dissipative provided 
the nonlinearity lies in the sector (at, bl); subsystem 3 is (- cy3, 013 (a2 + 
b2)/2, -qa&i) dissipative provided the nonlinearity lies in the sector 
(az, 6 3 .  If we were interested in global stability, then the obvious choice 
of sector would be (- 1, I ) ,  since the nonlinearities are sinusoidal. 
However, tighter sector bounds are acceptable when, as in the case  of a 
power system, only local asymptotic stability is of interest. In the 
following section, we consider the nonlinearities to be in the sector (26, 
l), for an  arbitrarily small E > 0. 

w. DERIVATION OF LYAPUNOV FUNCTION 

Results in [ l  11 are used to  prove local asymptotic stability. The stability 
proof is not in itself important because we normally start with a locally 
stable system. As a side effect, though, the stability proof gives us a 
Lyapunov function [lo], and it is this Lyapunov function which is of 
interest. 

In this section, we  give a step-by-step method of choosing the 
dissipativeness parameters such that the stability criterion of [lo] is 
satisfied. The end result of the calculation is a matrix P such that X'PX is 
a Lyapunov function. 

Step I :  Check that 

&-( $2>o 

and 
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(if  not true, the procedure fails). 
Choose small E ,  82 > 0 such that 

Step 2: Choose a, = az = 2~ 

Step 3: Solve for  the matrices P (symmetric positive definite), L ,  and 
W the following matrix equations: 

PA + A  'P= - LL' 

PB=CS-LW 

R = W'W. 

A ,  B, C being system matrices, S, R being dissipativeness parameters for 
the subsystem 1. 

The following theorem states the main result of this paper. 
Theorem 2: If conditions (3) and (4) hold and the parameters are 

chosen according to Steps 1-3, then V(x) = xTPx is a valid Lyapunov 
function establishing local asymptotic stability of the original system. 

Remark: The proof is based on [ 1 1, Theorems 1 and 21. Let 

and 

Q ~ S H + H V - H T R H - Q  

where H is the matrix of interconnection coefficients. Theorem 1 [I 11 
states that the system is input-output stable if Q is positive definite. 
Theorem 2 [ 111 extends this result to internal stability provided the state 
space satisfied certain conditions. Our proof will show that the above 
choice of parameters satisfy the conditions of Theorems 1 and 2 [ll].  

Proof: 

a2albl + ff302b2 0 
&= [ 0 ( ~ 2 -  ~ 1 8 & : 2  8 1 .  

0 0 - 4 z b : t  

Sinusoidal nonlinearity is in the  sector (26, 1) giving 

For the choice of ai's given in Step 2, Q is positive definite if pi's 
satisfy the following condition: 

Then, if the conditions (3) and (4) are satisfied: subsystem 1 is 

dissipative (Theorem 1). 
The other two subsystems being memoryless do not contribute to  the 

Fig. 1 .  Region of stability for the example, xI = 0. 

Lyapunov function. Theorem 2 [ 1 I] guarantees existence of a Lyapunov 
function. The procedure given in [lo, Theorem 161 and Step 3 can be used 
to find an energy function for a linear dissipative system. v v v  

Remark: This condition for the existence of Lyapunov function is more 
likely to be satisfied if the damping coefficients are large and the ratio of 
the damping coefficients is near unity. This shows that this condition is in 
line with the conjecture put forward by Willems [ 171. This condition also 
depends upon interconnection coefficients. If b,'s are large the damping 
coefficients have to be large too. Intuitively we can see that strong 
interconnection will propagate more disturbance and for the synchroniza- 
tion to be maintained damping should be large. 

This result can be repeatedly applied when dealing with a multimachine 
system. A common way to decompose a multimachine system is to take 
one machine in common with all the other machines. This gives (n - 1) 
two-machine subsystems and n(n - 1) nonlinearities. Subsystem analysis 
for (n - 1) two-machine subsystems is the same as given by Theorem 2 
and can be repeatedly applied to get dissipativeness parameters. Finding 
dissipativeness parameters for the n(n - 1) nonlinearities is no problem 
at all. Unfortunately, the conditions on Q to be positive definite cannot be 
simplified (as for the two-machine case) and Sylvester's criterion has to 
be used. The role of a i ' s  and pi 's  in manipulating Q is being studied and 
will be reported shortly. 

V. NUMERICAL EXAMPLE 

Machine parameters are 

. .  
d2=2.0; b12=b2,=0.1; 6?2=30°; 8 1 2 = 4 O -  ,I.- r- .,. . -: . 

One set of dissipative parameters found following Steps 1-3 is 

and the Lyapunov function is 

xj,= - K - 2 & ; 2 + 2 8 1 2  

x3" = - 2(& + eI2) .  
Now let 
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Criteria for Asymptotic Stability of Linear Time-Delay 
Systems 

v,= min [min V(X) : x3 = x J  
i=l. Y 

Numerical optimization gives V, = 0.2784 at x ,  = 0.0834, x2 = 3.934, 
.x3 = 1.955. The region of stability is given by 

Fig. 1 shows x2, x3 cross section, x ,  = 0.0. 

VI. CONCLUSION 

A systematic procedure is given to construct a quadratic Lyapunov 
function for a two-machine system with transfer conductance. Dissipativ- 
ity  theory is used to study stabiity of a system decomposed into subsystems. 
The idea is to extend this procedure for a general  multimachine 
system. If an n-machine system is decomposed as one machine common 
to all other machines (a commonly chosen decomposition [13], [15]), then 
the procedure given in this note is the same for all the subsystems; only 
Q calculation will depend on a particular system. Attempts are being 
made to extend this method, results will be reported later. Efforts are also 
being made to understand the role of the multiplier a,’s and as to what its 
value should be for a multimachine system. As such, dissipativity theory 
shows good promise of obtaining better stability results for large-scale 
systems. 
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TAKEHIRO MORI 

Abstract-Several sufficient conditions which guarantee stabfity of 
linear  time-delay  systems  are derived. Each of these  results is expressed by 
a  succinct  scalar  inequality and corresponds to a certain  extent to the 
tradeoff  between  simplicity  and  sharpness. 

I. INTRODUCTION 

Stability analysis of time-delay systems has been one of the main 
concerns of  the researchers who would like to inspect the properties of 
such systems. In general, the introduction of time-delay factors makes the 
analysis much more complicated, and convenient methods to check 
stability have long been sought. In the existing stability criteria of the 
systems, mainly two ways of approach have been adopted. Namely. one 
direction is to contrive the stability condition which does not include 
information on the delay and the other is the methods which take it into 
account. The  former case is often called the delay-independent criteria 
and generally provides nice algebraic conditions [I]-[3]. However, 
abandonment of information on the delay necessarily causes conservative- 
ness of the criteria especially when the delay is comparatively small. 

In this paper, several criteria for asymptotic stability of linear time- 
delay systems of the form M(t) = Ax(t) + Bx(t - T )  are  derived. Most of 
them are delaydependent criteria and  are expressed by simple i n w -  
ties. The main results of this paper are shown in the next section, where a 
basic proposition is first provided and thereby several stability criteria are 
derived. As an application, two examples are worked in Section JII and 
some concluding remarks are given in Section IV. Before beginning, we 
define some notations. Let p ( X )  be the matrix measure for X E CnXn 
derived from  some matix norm llXll. X;(X) denotes the eigenvalues of X 
and Re Ai(X) and Im h,(X) are the real and imaginary parts, respectively. 
The imaginary unit is represented by j ,  i.e., j 2  e - 1 and I denotes the 
unit matix as usual. 

II. MAIN RESULTS 

Let Us investigate the stability properties of systems described by linear 
differential difference equation 

where A ,  B E R”’”, x(t) E R”, r > 0. The fundamental result which 
gives a condition for asymptotic stability of the system is summarized in 
the following theorem. 

Theorem: The system (1) is asymptotically stable (AS), if 

holds. Here A denotes the range of the values taken by the solution y of 

y =  Im h,iA+Be-’YJ. e-Re75), Re s20, sEC, r>O. (3) 

To prove this theorem, we  need some preliminary results shown below. 
Lemma I :  The necessary and sufficient condition for the transcenden- 

tal inequality 
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