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SUMMARY 

Passivity is perhaps the most basic concept in circuit theory. Unfortunately, the existing definitions of passivity are 
too restrictive and often contradict one another. In this paper, a new passivity definition is proposed which is 
applicable to all n-port and ( n  + 1)-terminal devices-including time-oarying, nun-linear, and distributed circuit 
elements. This definition generalizes and reconciles several recent conflicting definitions. 

1. INTRODUCTION 

Several recent publications, see for example References 1 and 2, have made it clear that there is still 
not universal agreement on how the term ‘passivity’ should be defined. Because passivity is a long-standing 
and often-used concept, it is undesirable that the word be used with several different meanings. The 
purpose of this paper is to propose a definition which, in effect, reconciles the differences among the 
existing competing definitions. As a means to this end, it is necessary to look very carefully at what is 
meant by a model of a device. In fact, there are three concepts to be explored: (a) passivity of a state-space 
model; (b) passivity of an input-output model; (c) passivity of a device. The existing literature treats 
issues (a) and (b). Our aim here is to tie together (a) and (b), and thence to look at (c). The bulk of this 
paper is an extension of several results of the state-space theory, to a situation where a state-space model 
need not exist. 

Superficially, it would appear that one could define passivity via the inequality 

1,; v ( t )T i ( t )  dt  5 0 (1) 

The difficulty with this approach is that it does not account for initial stored energy. One must require 
that (1) only hold when the circuit is started in a ‘relaxed state’3; alternatively, one must modify (1) to 
allow explicitly for stored energy terms, as in Reference 4. For the classes of circuits treated in References 
3 and 4 these two definitions are adequate and indeed equivalent. In general, though, it is surprisingly 
difficult to state precisely what is meant by the terms ‘relaxed state’ and ‘stored energy’, so that the 
definitions become ambiguous.8 

A resolution of these problems has been presented in Reference 2, but only for the case where a 
state-space model can be written down. To allow for the widest possible class of circuits, we need to 
work with what is generally called an input-output model. This allows us to bypass the concept of ‘state’, 
and specify a device purely in terms of its admissible signals (voltages and currents). A new complication, 
though, is that the input-output model implicitly assumes fixed initial conditions. That is, it describes 
only one frame of the device, for the given or implied initial conditions, rather than the whole device. 
(In contrast, a state-space model automatically includes a specification of the effect of initial conditions, 
via the parameter called initial state.) One effect is that the input-output definition of passivity in 
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Reference 5 is not equivalent to that in Reference 4, although they look the same. Even the stability 
properties of a ‘passive’ circuit depend crucially on which definition of passivity one uses6 

The approach in References 1 and 6 does allow for the effect of initial conditions, while in other ways 
retaining the spirit of the input-output approach as in Reference 5 .  However, the central results of 
References 1 and 6 depend in an essential way on the existence of a state space. To our knowledge, 
there is no treatment in the literature of device models with the generality allowed by an input-output 
approach, retaining at the same time the ability to describe initial condition effects. The present paper 
provides such an approach. The main contributions are 

(i) A framework (Section 2)  which allows one to discuss initial condition effects in an input-output 
setting; 

(ii) The introduction of the concept of atfuinubilify (Section 3 ), which is closely allied to the state-space 
notion of reachability; and the extension (Theorem 3.5) to an input-output setting of an important 
property of stored energy; 

(iii) The reconciliation (Section 4 ) of several apparently conflicting definitions of passivity. 
Because we do not necessarily assume the existence of a state-space, we need an extremely general 

definition of a ‘device’. All that is required is a description of the set of admissible signals at the device’s 
interface to the external world. In particular, the device might be an n-port as in Figure l(a), or an 
(n + 1)-terminal device as in Figure l(b). In those cases, the ‘signal’ could be a vector of port or terminal 

( a )  

“3 

( b )  
Figure 1. (a) An electrical n-port. (b) An ( n  + 1)-terminal device 
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voltages and currents. Another possibility is a ‘distributed port’ where voltage and current are functions 
of space co-ordinates, so that the signal at each time is an infinite-dimensional vector. Time-varying 
circuits are allowed. It is not assumed that to each voltage there exists a unique current, nor vice versa. 
Incidentally, we do not assume causality, for an important reason: in an electrical n-port, it is often not 
clear which of the signal components (voltages and currents) should be called ‘inputs’, and which should 
be called ‘outputs’. Circuit analysts commonly make an arbitrary choice. To avoid such complications, 
we have chosen simply to abolish the distinction between inputs and outputs. 

2. DEVICE MODELS 

In this section, we shall briefly discuss passivity for the case where a state-space model is available, and 
then show how some of the state-space properties can be carried over to a situation where only an 
input-output description is available. Since our main interest lies in looking at the input-output case, 
only an outline of the details for the state-space case will be given; for a more rigorous treatment, the 
interested reader should consult Reference 2. 

For reasons that will later become clear, we need to consider devices with possibly variable parameters. 
Thus, with a device 9 we associate a state-space model S ( p ) - o r ,  more precisely, the collection of all 
S ( p )  as p takes all values in some set 9. That is, for each p E 9, S( p) is a state-space description (satisfying 
the usual axioms-see for example Reference 2), with state-space C, input space %, and output space 
‘3. To keep the notation simple, we suppose that C, % and ‘3 do not depend on p. For much of what 
follows, there is actually no need to distinguish between inputs and outputs. Indeed, for many electrical 
circuits the designation of some port voltages and currents as ‘inputs’ and others as ‘outputs’ creates an 
asymmetry which is somewhat artificial. It makes sense, then, to define a signal space Y containing all 
signals of interest, Most commonly, we will find that Y can be decomposed into the form Y = 9’1 X 9 2 ,  

because the ‘interesting’ signals of an n-port tend to occur in pairs (e.g. the voltage and current at each 
port). The obvious choice is Y = ‘II x ‘3; but, as the following examples indicate, there are sometimes 
better choices. 

2.1. Example 

For the non-linear two-port described by 
u1 =fl(il, ~ 2 )  

iz =Mi l ,  02) 

we have a null state-space. If we want our mathematical model to describe, say, voltages and currents 
which are continuous functions of time, then % = ‘3 = Ce2[0, a), where Cen[O, a) is the space of continuous 
n-vector functions of time. The variables il and v2 are inputs, and v1 and i2 are outputs. But since the 
distinction between inputs and outputs is irrelevant to our present purposes, we can simply lump all four 
variables together as a vector S E Y ,  where Y= Ce4[0,m). Some ways of writing s ( t )  are as s ( t ) =  
[vl(t) uZ(t)  il(t) i2(t)lT, or s ( r )  = [ u l ( t )  il(t) u ~ r )  i2(t)IT, or 

or several other possibilities. Which of these is chosen is purely a matter of notational convention, and 
0 does not affect the basic theory. 

2.2. Example 

For the element described by 

dt 
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A simple state-space description is 

with output equation 

Here, u(a dildt) is a newly defined variable introduced solely for the purpose of setting up state equati0ns.t 
We need u as a 'signal of interest' in the state-space description. For a port variable description, though, 
all we need is s ( t )  = [ v ( t )  i(t)lT, so Y = 9 in this case. 

2.3. Example 

All our examples so far have used voltages and currents as signals, but this is not essential. If we 
wanted to use a scattering description for a circuit, then a more likely choice would be something like 

0 s ( t )  = [ v ( t ) - i ( t ) ,  v ( t ) +  i(t)]'. 

For any consideration of passivity, an important quantity is the energy entering the device. This is a 
function of the time interval over which measurements are taken, and of the signals at  the ports. Let the 
energy supplied to the device over time interval [ to ,  tl] be denoted E(s,  to, t l ) ,  where s E Y is the signal. 
For an n-port, an explicit formula is 

E(s ,  to ,  t l )  = ly v( t )Ti ( t )  dt  

where u ( t )  and i ( t , )  are vectors of port voltages and currents, with the usual sign conventions. To complete 
the definition, it is necessary to specify how v and i depend on s. 

Let ( V ( s ( t ) ) ,  I ( s ( t ) ) )  be a pair of functions such that 

( v ( t ) ,  i(t)) = ( V ( s ( t ) ) ,  I ( s ( t ) ) )  

The pair ( V ( s ( t ) ) ,  I ( s ( t ) ) )  will be called the port voltage-current readout map. 

2.4. Example 

For the non-linear two-port in Example 2.1, if we had chosen 

s ( t )  = [ v l ( t )  v 2 ( t )  i l ( t )  i2(t)IT, 

we would have 

and 

For the choice of s ( t )  in the scattering description of Example 2.3, we have: 

v(s(t)) = [1/2 1/2ls(t) 

t There are many other devices which require a similar treatment. For example, the higher-order elements defined in Reference 9 
with p > 0 or a < p < 0 belong to this class. 
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and 

Z ( s ( t ) )  = [-1/2 1/2]s(t) 0 

When the port readout map exists, the energy entering the device in the time interval [to, t l]  is given 
by 

(1 

E(s,  to, tl) = I,,, V’(s(t))Z(s(t)) dt  

A standard assumption is that for the device under consideration, the quantity in the integrand is integrable 
over any finite interval in 88. This simply means that in any finite time interval, the energy entering the 
device is finite, and is not at all a strong restriction. 

Most generally, though, we cannot guarantee the existence of a readout map of the above form. Two 
practical examples are: 

(a) If s ( t )  is a vector of voltmeter and ammeter readings, then at even moderately high frequencies 
the meter dynamics cannot be neglected; so s, u and i are related by differential equations. In this case 
a readout map can still be defined (although not precisely in the form introduced above), but o ( t )  and 
i ( t )  depend on the time evolution of s, rather than on the signal s ( t )  at one point in time. 

(b) In high-frequency circuits, and also in LSI circuits, the interconnections between components are 
distributed in space, and there are no well-defined ‘ports’ or ‘terminals’. In this case the voltages and 
currents must be written in the form u(z ,  t) and i ( z ,  t), where z is a vector of space co-ordinates. 
Correspondingly, s (t)  will lie in some infinite-dimensional space. The above energy integral must then 
be replaced by an integration over both space and time co-ordinates. 

It would be a tedious matter to write down a single energy formula which covered all such cases 
(together, perhaps, with cases which have not occurred to the authors). Fortunately, the results of this 
paper do not depend on the precise form of E ( . ,  * ,  .). We do require, however, that the following 
properties hold. 

2.5. Assumption 

and 
For every s E 9, and every to, tl ,  ERsuch that to < t l ,  E(s, to, t l )  is a well-defined number in R U  {-m, +a}, 

(a) W, to ,  to )  = 0 
(b) E(s, to, t l )  = E ( $  to, t l ) ,  for any s* such that i ( t )  = s ( t )  for all t E [to, rl]  
(c) E(s,  to, f 2 )  = E(s,  to, t l )+E(s ,  t l ,  f 2 )  whenever to< t l  s t 2 .  

Assumption 2.5 is trivially satisfied when a port readout map exists, and is also satisfied in every other 
case known to the authors. 

Another important quantity is the available energy: 

where X((xo ,  p ) ,  to) c 9 is the set of all admissible signals consistent with the initial condition x ( t o )  = xo 
and parameter setting p. (The extra parentheses around (xo ,  p )  are for consistency with a more formal 
definition to be given later.) It is readily seen that this method of writing EA is equivalent to the more 
usual definitions-see for example References 1 and 2-where the signal space is split into separate input 
and output spaces. The properties of EA are intimately linked with passivity,’.’ and in fact the passivity 
definition in Reference 2 is stated directly in terms of finiteness of EA. 

Most of what has been said, so far, works equally well in a state-space setting or an input-output 
setting. However EA is a function of initial state; and input-output models lack the concept of initial 
state. Here we must face a fundamental distinction between a state-space model and an input-output 
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mapping: a state-space description implicitly describes the admissible signals for every possible initial 
state. Input-output descriptions, on the other hand, describe what happens for a fixed initial state. So, 
for a device 9 for which we have a set of state-space descriptions { S (  p ) ,  p E 8}, the usual input-output 
model describes, not 9, but somethifig like 9 ( x o ,  p )  for fixed xo and p. Frequently, only the case xo = 0 
is considered. 

When no state-space model is available, what substitutes for initial state? The answer is that the 
admissible signals of a device depend on a variety of factors-for example, temperature, initial capacitor 
charges, manual knob settings-which we can lump together under the general name of ‘parameters’. 
Let r denote the set of all possible parameters, and let ‘yer denote the parameter value in any one 
experiment. When we have a state-space model, it will usually be possible to write T = C x B  and 
correspondingly to partition y = (xo, p ) ,  where C is the state space and 9’ accounts for every parameter 
which is not an initial state. Even when no state-space model is available, it will sometimes be possible 
to divide the parameters into ‘initial conditions’ and ‘everything else’. In general, though, we cannot 
always expect to be able to make this distinction. 

If 9 is the device, then we can denote that instance of the device with parameter setting ‘y, and with 
observations starting at time to, as 9 ( y ,  to). (Initial time might, of course, also be a component of y ;  but 
it will simplify our notation if to is displayed explicitly, even if it already occurs as a component of y.) 
Mathematically, 9 ( y ,  to) is just a set of signals-i.e. it is a subset of 9’. It will be convenient for us to 
call 9 ( y ,  to) a frame of device 9. The set of all admissible signals for device 9 is, of course, the set 
{ W y ,  t o ) :  Y E  r, t o €  w. 
2.6. Example 

Consider the linear capacitor described by 

Here a signal in Y has two components, the voltage u and current i, and their relationship (Lea, the 
admissible set of (v ,  i )  pairs) is affected by the parameters qo and C. If we suppose that qo is allowed to 
take any real value, and that-perhaps via a manual knob setting-C can take any real value in the 
range [C, ,  C,], then I‘=Rx[C1, Cz]. (With one special proviso: if C1<O<C2, then the parameter 
combinations qo # 0, C = 0 should be excluded from r.) If, in some application, it is desirable to make 
the parameter space a linear space, we can simply embed r in the larger space f = R2. (If this is done, 
then it is important to insist that r E f ,  and that parameters are allowed to take values only in r, not in 
the whole of f.) 

Ignoring the possibility C = 0, for simplicity, there are at least two obvious state-space models for this 
device: 

(i) The equations 4 = i and u = C-’q. Here we have C = R and B = [C,,  C,]. 
(ii) The equations 4 = i, C = 0, and u = C-’4. In this case C = R X  [C,,  C,] and B is the empty set. 0 

2.7. Example 

For the time-varying capacitor 

an obvious set of state equations is 
q = i  

1 
2+sin t 4 

u=- 



WHEN IS A DEVICE PASSIVE? 157 

An equally plausible choice is the second-order (non-linear but time-invariant) set 

q = i  

C = J J [ ( l - ( c - 2 ) * ) ]  

v = q f C  

In this latter case we must of course restrict the initial condition such that C(t0) = 2 +sin to. That is, the 
0 set of permissible initial conditions is not the entire state-space. 

2.8. Example 

The multi-valued resistor 

has no state-space representation in the usual sense. Also, the parameter y has no effect, so the choice 
0 of r is irrelevant. For simplicity, we can just pick r = (0). 

Examples 2.6 and 2.7 illustrate the point that the choice of 1 and P can be somewhat subjective. The 
parameter space r is more fundamental, because it does not depend on the choice of a state-space. The 
examples also demonstrate that an initial state can be interpreted as a parameter, or vice-versa. This is 
the reason why, even when a state-space model is available, we lump xo and p together as y = ( x o ,  p ) ,  
without making a strong distinction between ‘initial condition parameters’ and ‘other parameters’. 

Earlier, a semi-formal definition of the available energy EA was given. It is now possible to give a 
formal definition, in a form which does not depend on existence of a state-space. 

2.9. Definition 

The available energy for device 9 is 

0 

Notice that this reduces to the previously given definition, in the case where a state-space model is 
available and r = 1 x 9. Thus, we have a framework which works equally well whether or not a state-space 
model can be written down. Although y cannot properly be called a ‘state’, it serves essentially the same 
purpose. 

2.10. Example 

if C # 0, or zero if C is zero. Therefore 
For the capacitor of Example 2.6, a straightforward calculation gives E(s,  to, t l )  = $Cu2(t , )  - ( 1 / 2 C ) q i  
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Example 2.7 is a little more complicated. Consider the case qo = 0, to = 0. If we consider the admissible 
voltage waveform 

lr O s t s -  
2 i O, 

lr 3rr 
u ( t ) =  -cost ,  -s t<- 2 2 1 

and calculate the corresponding current, the result is E(s, 0,27r) = -3. If the same waveform is repeated 
periodically for N periods, then E(s, 0,2N7r) can be made as negative as desired by taking large enough 
N.ThismeansthatE,(O, 0)  = 00. AmoredetailedanalysiswillshowthatEA(qO, to) = 00for allqoand to. 0 

The fact, illustrated above, that EA(y,  to) need not be finite (for some or all y and to) should be borne 
in mind in the following section. 

3. ATTAINABILITY 

A fundamental concept in state-space theories is the notion of reachability of one state from another. 
To say that x 1  is reachable from xo on the time interval [to, tl] means that there exists a state trajectory 
x ( t )  such that x ( t o )  = xo and x ( t l )  = xl. (A more precise definition is given in the Appendix.) If we consider 
the parameter y in 9 ( y ,  to) as being comparable to a state, is there any sense in which we can say y1 is 
reachable from yo? The immediate answer is no, because y is a constant in each experiment. There is 
no y ( t )  to connect yo to y l .  That is, we can interpret y as being like an initial state, but there is no 
analogue of ‘state trajectory’ in the input-output model. However, we shall show that it is possible to 
define something close to reachability. Before doing this, it is necessary to establish some notation. 

3.1. Notation 

For any s E Y, s[,,.,,l denotes the signal such that 

s ( t ) ,  f o r t o s t s t l  
s[wll(t) = ( o, otherwise 

For s E 9’ and T E R, QTs meanst the same as s [ ~ , ~ ) .  For a set X c 9, QTX means {QTs: s E X } .  

3.2. Notation 

For a given signal ŝ  E Y, 
9 ( ~ ,  to) I t~ ro .T ]  = {s E ~ ( Y Y  to): s ( t )  = f(t)vt E [ to ,  TI} 0 

That is, 9 ( y ,  t o ) I $ r o , ~ ~  is that subset (it might be empty) of 9 ( y ,  to) such that all signals are equal to 
s* on the interval [to, TI, but are otherwise unconstrained. Figure 2 shows a diagrammatic representation, 
for the slightly oversimplified case where s ( t )  is a scalar. For some fixed yo E r, the solid lines are intended 
to represent signals in 9 ( y o ,  f O ) ) s ^ ~ f o , f , l y  and the dotted lines are intended to represent all other signals 
in 9 ( y o ,  to). Now, it might well happen that that portion of the solid lines from tl  onwards coincides with 
the signals in 9 ( y l ,  r l )  for some y1 E r which may be different from yo. This motivates the following 
definition. 

t QT is often called the anti-causal truncation operator. 
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I I  
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I 
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+ I  
0 ’  
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Figure 2. Illustration of 9(yo .  to) I 4ro.,,l 

3.4. Defin ition 

For device 9 and energy measure E, ( y l ,  t l )  is attainable from (yo, to )  iff 3 f ~  g ( y 0 ,  to )  such that 

If one thinks of y as the ‘state’ of the device, then this is somewhat like state-space reachability. The 
precise connection is given in the Appendix. With the aid of this newly introduced concept, we are now 
able to state one of the most important results of this paper. 

(yl ,  t l )  is attained from (yo,  to) via f, and E ( f ,  to, t l )  is finite. 

3.5. Theorem 

The available energy EA has the properties 

6) EAh, to )  a 0 

for all ( y ,  to) such that 9 ( y ,  to) is non-empty. 

via f, 
(ii) For any to, t l  E 03, any yo, y1 E r, and any SIE 9 ( y o ,  to) such that (yl ,  t l )  is attained from (yo,  to) 

A proof is given in the Appendix. 
Inequality (2) is reminiscent of the well-known inequality 

11 

E ( x ( t o ) ,  to)+ I uWTi( t )  dt z E s ( x ( f l ) ,  tl) 

for a passive circuit, where E,(x, t )  is the stored energy of the circuit, and x ( t )  is the state at time t. 
Suppressing the technical details, which may be found in References 1, 2 and 7, we simply note that 
inequalities of the above form are fundamental to any careful discussion of passivity. The significance 

10 
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of Theorem 3.5 is that, for the first time, it states this dissipation inequality without requiring the existence 
of a state-space model. 

Note that Theorem 3.5 does not require any sort of passivity assumption. It turns out, though, that 
finiteness of EA(y,  t) will require some sort of passivity property to hold (see Section 4). Obviously 
inequality (2) is interesting and useful only when all terms are finite. 

4. DEFINING PASSIVITY 

The following definitions are taken from References 1 and 2, with minor and non-significant changes to 
be consistent with our present notation. 

4.1. Definition 

9 ( y ,  to) is externally passive iff E(s,  to, t l )  2 0 for all s E 9 ( y ,  to) and all t l 2  to. 0 

4.2. Definition 

9 ( y ,  to) is externally weakly passive iff there exists some finite p E R such that E(s,  to, t l )  + p  3 0  for all 
s E 9 ( y ,  to) and all t l  to. 0 

4.3. Definition 

and all to E R. 
A state representation S ( p )  with state-space C is internally passive iff EA((x,  p ) ,  to) < Q) for all x E C 

0 

4.4. Definition 

A relaxed state of S ( p )  at to is any x *  such that EA((x*, p ) ,  to) = 0. 0 

4.5. Definition 

and there exists some relaxed state x*  E 1. 
A state representation S ( p )  with state-space C is internally strongly passive if it is internally passive, 

In a very crude sense, external weak passivity is comparable to internal passivity, and external passivity 
is comparable to internal strong passivity. However an exact comparison would be pointless, because 
the ‘internal’ and ‘external’ versions really refer to different concepts. Definitions 4.1 and 4.2 do not 
define passivity of a device; they refer only to frames 9 ( y ,  to) of 9. Definitions 4.3 and 4.5 refer to the 
whole state-space, and therefore to the whole device in the special case r=C, but are only applicable 
when a state-space model is available. Our aim in this section is to supply a passivity definition which 
applies to 9 rather than just one of its frames, and which is applicable whether or not a state-space 
model is available. 

The historical background to Definitions 4.1 and 4.2 is easy to deduce. The inequality E(s,  to, t l )  b 0 
says that 9 ( y ,  to) can never deliver more energy to the external world than it has received; this clearly 
agrees with the generally accepted intuitive notion of ‘passivity’. On the other hand, it takes no account 
of initially stored energy. The termt p in Definition 4.2 allows for the possibility that some energy is 
stored in 9 ( y ,  to) at time to. Trivially, external passivify implies external weak passivity. A more significant 
connection between the two definitions is given in the following theorem. 

4.6. Theorem 

If 9 ( y o ,  to) is externally passive, then 9 ( y l ,  tl) is externally weakly passive, for every (yl ,  t l)  such that 
(yl ,  t l )  is attainable from (yo,  to). 

t Note that, although p is a constant for each y and lo, it will in general vary with y and ro. 
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Proof. Choose any s* such that (yl ,  t l )  is attained from (yo, to) via S: (The choice is not in general 
unique, but an arbitrary choice will suffice for the proof.) From Definition 4.1 and Assumption 2.5 it 
follows that 

E(s,  t i ,  f 2 )  + E(S: to, t i )  3 0 

for all s E 9 ( y o ,  fo)I$~,o,,,l .  From Definition 3.3, and the fact (Assumption 2.5 again) that E(s ,  tl, t z )  does 
not depend on s ( t )  for any t < t l ,  we can deduce that the same inequality must hold for all s E 9 ( y l ,  t l ) .  

0 Finally, note that E($  to, t l )  is fixed once s has been chosen, so we can set p = E ( f ,  to, t l ) .  
Another important result is the following. 

4.7. Theorem 

9 ( y ,  to) is externally weakly passive iff 0 s EA(y, to) < 00, and externally passive iff EA(y,  to) = 0.  

Proof. It is obvious that external weak passivity provides an upper bound for the ‘sup’ in Definition 
2.9; in fact we have EA(y, t o ) s P .  For the converse, note that Definition 2.9 implies that EA(y, to)2 
-E(s ,  to, t l )  for any t l  2 to and any s E 9 ( y ,  to). Thus we can set p = E A ( ~ ,  to). For the final assertion of 

0 
These results suggest that the correct generalization of the ‘relaxed state’ idea is a pair (y* ,  to) such 

that EA(y*,  to) = 0. This is certainly a logical extension of the definition of ‘relaxed operating point’ in 
Reference 8. If a device 9 is to be called passive, then, we ought to have the properties 

the theorem, simply repeat the above proof for the case p = 0. 

(i) 9 ( y * ,  to) is externally passive, for all relaxed ( y * ,  to); and 
(ii) 9 ( y ,  to) is externally weakly passive, for all y E r and all to E R. 

There is, unfortunately, a complication. A linear circuit always has a relaxed state, but this property does 
not extend to the general non-linear case. 

4.8. Example 

Consider the capacitor whose voltage-charge characteristic is given by u = e‘. That is, we have 

The available energy is EA(q, t )  = eq; so 9(qo,  to) is externally weakly passive for all 40 E IF4 and to E R. 
But there is no state of ‘zero stored energy’. No matter what the initial qo is, some finite amount of 
energy can be extracted from this capacitor. 

The capacitor in Example 4.8 should, one could argue, be called passive on the grounds that one can 
never extract more than a finite amount of energy at its terminals. But there are at least two grounds 
for suggesting that it should perhaps not be called passive: 

(a) How can one synthesize such a device? Whatever method is used, some form of initial energy 
storage mechanism must be built into it. This runs counter to the idea that one ought to be able to build 
any passive device, at least in principle, using no energy other than that which is dissipated in a 
non-electrical form (heat, etc.) during manufacture. 

(b) If the capacitor in question is connected in parallel with a 1R linear resistor, the resulting charge 
tends to --co as time increases. This is an example of the result in Reference 6, which states that the 
stability properties, which are generally believed to be associated with passive circuits, do not extend to 
the (externally) weakly passive case. 

To get around this dilemma, we propose replacing the traditional passive/active distinction by a 
three-way classification: strongly passive, passive, and active. An active device can supply unlimited 
energy to the external world. A strongly passive device can supply no energy, other than-at most-the 
energy which was supplied to it in driving it from a relaxed condition. The borderline case, which we 
simply call passive, is where the device can supply energy to the external world, but only a finite amount. 
The precise definitions are given below. 
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4.9. Definition 

9 is passiue iff 9 ( y ,  to) is externally weakly passive for all y E I“ and all to E R. 0 

4.10. Definition 

9 is actiue if there exist y E r and to€ R such that S ( y ,  to) is not externally weakly passive. 0 

4.11. Definition 

9 is strongly passive iff, for every y1 E r and tl E R, there exist yo€ r and to€  R such that (yl ,  t l )  is 
0 

Notice that, by Theorem 4.6, strong passivity implies passivity. 
One feature of the above definitions, which is perhaps not immediately obvious, is illustrated in the 

attainable from (yo,  to), and S ( y o ,  to) is externally passive. 

following example. 

4.12. Example 

Consider the two devices described by 

1 d d t )  
dt  

9 1 ( u 0 ,  to) = { (u,  i ) :  i ( t )  =-and u( to)  = uo 

d d t )  
(u,  i ) :  i ( t )  = -and i( to) = io  

dt  
1 2  Device g1 is just a 1F  capacitor, and it is strongly passive. Its available energy is EA(uo, to) = 2u0. However 

the available energy of B2(iO, to) is fa for any io and to; from Theorem 4.7, then, 9Jz is active. The 
reason is that the energy that can be extracted depends on u( to ) ,  and, for any fixed io, g2 contains (u ,  i )  

0 
The above result is not particularly surprising if one notes that whereas g1 is just a 1F capacitor, 9JZ 

pairs with arbitrarily large u( to ) .  

. ( I )  is really a u(” - I ‘higher-order element” having a constitutive relation 

di(t) d2u(t) 
dt dt2 

- 

subject to the initial condition : 

This element can be realized by the linear ‘active’ 1-port shown in Figure 3. To verify this, note that 

. ,, d2u 
u2 = u,, = u,, = - 

dt2 
and 

di du,, . 
dt dt 
- - I , ,  = -12 = v2 

Equating these two equations, we obtain the desired constitutive relation. 
The point of Example 4.12 is that two devices with the same constitutive relation (here i =du/dt)  can 

be totally different deuices. A device is specified in terms of its frames 9 ( y ,  to), and the parametrization 
y forms part of the description of the device. 

When a state-space model is available, the above complications do not arise. Suppose that r = C X B 
where C is the state space. It is immediately evident, from Theorem 4.7, that 

(a) 9 is passive iff S ( p )  is internally passive for all p E 5”; 
(b) 9 is active iff there exists some p E B such that S( p )  is not internally passive. 
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Figure 3 .  Circuit for realizing the constitutive relation 

It should also be clear, from the details given in the Appendix, that 9 is strongly passive iff for each 
P E P :  ( i )  S ( p )  is internally passive; (ii) there exists at least one relaxed state of S ( p ) ;  (iii) for every 
xI E C, there exists x 2  E C which is equivalent to x1 and reachable from a relaxed state. With the obvious 
observability assumption, condition (iii) simplifies to requiring that every state is reachable from at least 
one of the relaxed states. If every state is reachable from every other state, then (without requiring any 
observability assumption) 9 is strongly passive iff, for every p E P, S ( p )  is internally strongly passive. 

If the entire state space is reachable from some relaxed state, there is no difficulty in seeing that 
Definition 4.1 1 agrees with commonly accepted intuitive ideas about passivity. For an interesting example, 
then, we need to look at a situation where some states are not reachable from a relaxed state. 

4.13. Example 

An ideal diode in series with a 1F linear capacitor can be described by 

9(qo ,  t o ) = {  (0,  i ) :  v( t )=q( r ) and i ( t ) aO,o r  v( t )<q( t )andi ( t )=O,  w h e r e q ( r ) = q , , + ~ ~ i ( r ) d r ]  

(A state-space description is also possible, but is a little more complicated.) Suppose I‘ = R; that is, we 
permit the initial charge qo to have any real value. The available energy is easily computed to be 

Note that this is not quite the same as what one would usually call the ‘stored energy’. (If q o > O  then 
some energy is presumably stored, but this can never be verified withoyt breaking open the device; the 
stored energy cannot be extracted at the terminals.) Every qo 5 0 is a relaxed state. It is also easy to see 
that (q l ,  r l )  is attainable from (qo, to) iff q1 = qo and t1 a to, or q1 > qo and tl > to. Therefore no qo < 0 is 
reachable from a relaxed state. The conclusion is that the device is passive, but not strongly passive. 0 

Is this a reasonable classification? We believe so, for the following reason: it is impossible to make 
the charge negative by any choice of voltage and/or current at the terminals. The only way to achieve 
qo<O is to charge the capacitor during construction of the device (i.e., before the diode is placed in 
series with the capacitor). Electrical energy is necessarily expended during construction of the device, 
and this is why we choose not to call it strongly passive. 
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Suppose we disallowed charging of the capacitor before assembly of the device. This would give us a 
different device, with the same rules for deciding which (u, i )  pairs are admissible, but with r={O} or 
I‘ = R’, depending on precisely what was allowed during construction. In either case the above problem 
would disappear, and this new device would be called strongly passive. 
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APPENDIX 

A. Attainability and reachability 

function 1,4~ and a readout map rp such that 
When a state-space description exists, and r = C x 8, then for each p E 8 there exists a state transition 

where x(t) E C is the state at time t. This formulation is a little unconventional in that it is more common 
to separate the signal s ( t )  into two components called the input u ( t )  and output y ( t ) ;  but this change 
makes no difference to what follows, it is merely a notational convenience. With y = (x(to), p ) ,  and some 
specified s E 9, equations (3) and (4) can be solved for x if and only if s E 9 ( y ,  to). 

The following two definitions are, modulo a change of notation, completely standard. 

Definition. Two states XI, x2 E C are equiualent at to iff Qb9((x1, p ) ,  to) = Qb9((x2, p ) ,  to) 0 

Definition. State x1 is reachable from xo on [to, tl] iff there exists f~ 9((xo,  p ) ,  to) such that x1 = 

Note that equivalence of x1 and x2 implies that there is no way, from input-output measurements alone, 
to tell whether the initial state was x1 or x2. An observable state-space model has the property that no 
two states are equivalent; that is, equivalence of x1 and x 2  at any to implies that x1 = x2. 

*p(t1, to, xo, ~ r r o . r l l ) .  0 

Suppose now that ((x,, p ) ,  tl) is attained from ( (xo,  p ) ,  to) via L Then 

Qi,9((x1, P), t d  = Qil(9((xo, P ) ,  to)I$to.rl~) 

= Qrl9((x2, P ) ,  tl)  

where x2 = +bp(tl, to, xo,  f[fo,fll). This means that x2 is a state which is reachable from xo on [to, t l ] ,  and 
equivalent to x1 at t l .  But equivalent states are ‘effectively identical’ as far as external measurements 
are concerned. This means that what we have called ‘attainability’ is the closest one can come, in an 
input-output setting, to the state-space notion of reachability. For observable state representations, 
attainability is the same as reachability. 

B. Proof of Theorem 3.5 

property (ii), the definition of EA ensures that 
Property (i) of the theorem follows trivially from the definition of EA and from Assumption 2.5. For 

E ~ ( y o ,  to)  a -E(s, to, t2) 

= -E(s, to,  tl) - m s ,  tl, t z )  
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(where the second line follows again from Assumption 2.5 for all s E 9 ( y 0 ,  to), whenever to zs tl S f2 .  In 
particular, then, we have 

EA(YO, t o )  -k E(i, to, tl)  -E(s, 11, f 2 )  

for all s E 9 ( y o ,  to) 1 iLfo,fl]. We also have 

EA(Y1, r l )  = sup {-E(s, tl,  f 2 ) )  
se9(rl*tl) 

123f1 

= sup {-E(x, tl, f 2 ) L  
S E X  

h*h 

where X = 9 ( y o ,  to) I i ~ ~ ~ , ~ ~ l .  This last replacement is possible because of Definition 3.3 and Assumption 
0 2.5(b). This leads immediately to inequality (2). 
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