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Fig. 2. The I th subsystem S ,  for a particular internal structure  of *\f, 

c , = ( I + c H ) - ‘ ,  c ~ = ( I + G H ) ~ ‘ G  (15) 

E , = H ( I + c H ) - ‘ ,  E ~ = ( I + H G ) - ’  ( 16) 

G=diag(G,),  H=diag( H,). (17) 

By substitution of (15) and (16) into (12). after some manipulations we 
obtain 

Q=(I+(c+Ac)H)~’(G+AG>. ( 18) 

Let us now introduce a class A 8  of linear diagonal operators AC, which 
depend on a parameter A belonging to a parameter set A. Letting AGx 
replace PC in (1 8), we define the diagonal operator 

Q,=(I+(c+Ac,)H)-’(c+AG,). (19) 

Finally we introduce a m X n t  matrix R ,  =(r , , (A))  whose elements 
r,,( X )  are given  by 

~ , , ( ~ ) = A , ~ ~ Q , A ~ ~  (20) 

where Q,, is thejth suboperator of Q,. 

holds. 

moreover. that the following conditions hold: 

On the basis of the previous considerations the following theorem 

Theorem 2: Assume that AC=AGi for a suitable value LEA. Assume, 

a) C , ,  C,. E , .  E , .  F are bounded causal operators: 
b) Q, is a bounded causal operator for all A € i \ ;  
c) p ( R A * ) < l  where IIQ,h.II=~~pXt.,I~Q,XII,i=l.~~~.m. 
Then  the system given by (6)-(9) and (15)-(17) is input-output stable. 

Proof From Theorem 2.b) we note  that Q is bounded since AG=ACi 
and LEA. Moreover, from Theorem 2.a) and 2.b) we deduce that for 
every i=  1;. . ,m there exists a pair of constants CY, and Bi (8; > 1) such 
that 

II Q, II =CY, II C,, II 

I!Q,x*II=P,IIQ,II 

where X’ corresponds to the maximum value II Q,,,. I1 of the gain II Qlh II. 
Consider now condition c) of Theorem 2, then from (13). (20)-(22) it can 
be  verified that 

P ( R ) = P ( R I ) % 4 R , - ) < l  

This proves the theorem since the proof of Theorem 1 is based on 
Assumption a) of Theorem 2, Qi is bounded and causal, and p( Rh)< 1. 

By comparison of the above theorem with the stability Criterion  [7] we 
deduce that Theorem 2 allows the following two level analysis: 

1) at subsystem level, by letting A run over the uncertainty range, we 
evaluate IIQ,,. II; 

2) at system level, R,. is constructed and  the above condition c) of 
Theorem 2, is tested; 
and it  can also be applied to cases where AC is unstable. Consider now 
subsystem Si (Fig. 2): C,,, Q,n, Qi,. as given  by (15) and (19) represent 
input-output  operators  of, respectively, the unperturbed,  perturbed, and 

worst case subsystems; (21) and (22) are norm relations for the  perturbed 
-unperturbed system and worst case-perturbed system comparison. These 
relations are convenient in the design stage: we can see how the  perturbed 
subsystem deviates from the unperturbed system ( C Y , )  and how the worst 
case relates to the unperturbed case (11 QiA. I1 = I1 C,, I1 aiBi). Notice that in 
the proof of Theorem 2 above, the stability of the worst case overall-model 
ensures the stability of all perturbed models with h € A :  if AGi=O for 
some A ,  then  the stability of the  unperturbed case is also ensured. 
Since, moreover, only the  products a;& of the  constants  appearing in 
(21) and (22) need to be evaluated, the criterion presented here still retains 
the mean feature, expressed in [7], of using reduced order models for the 
design of feedback stabilized subsystems. 

V. CONCLUSIONS 

Modeling is undoubtely the most important  step of any analysis and 
synthesis procedure. When large-scale system stability problems are con- 
sidered, the effect of modeling errors at subsystem level must be carefully 
investigated. The results of this correspondence prove that it is possible to 
deduce guaranteed stability margins in the case of particular types of 
model uncertainties as represented in Figs. 1 and 2. Moreover. it has been 
shown that, once the subsystem input-output properties have been 
analyzed by using their simplified models, the well-known composite- 
system method can be applied to test the stability of the whole system. 
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shown that one can sometimes deduce stability when the test matrix is 
merely nonnegative definite. 

I. INTRODUCTION 

In a recent paper  [I],  a general stability criterion was given for a wide 
class of interconnected systems. Each subsystem was assumed to be 
“dissipative”-a property which includes passix5ty. finite gain, and conic- 
ity as special cases-but was otherwise largely unrestricted: it could be 
linear or nonlinear and be memoryless or have lumped or distributed 
memory. Both Lyapunov stability and input-output stability were treated. 
The interconnections between the subsystems were assumed to be linear, 
with all nonlinearities absorbed into the subsystems. 

A central result of [ I ]  is that stability can be checked by forming a test 
matrix Q .  A sufficient condition for stability is that 0 be positive definite. 
If  the  test matrix Q is nonnegative definite, but singular. then intuitively 
one would suppose that stability could still be guaranteed by adding some 
minor side constraints. For example, the knowledge that some of the 
subsystems were stable in isolation, and that these subsystems were 
“sufficiently well coupled” into the overall system. might be sufficient. 
The present note shows that one can. in fact. simply state  a general 
stability criterion which  is applicable in the case where  the test matrix Q 
of [ 11 is nonnegative definite. 

The results presented here have several points of contact with those of 
Vidysagar [3]. In  an earlier paper [4]. Vidyasagar gave a passivity-type 
stability criterion; as in [l]. this required that a certain test matrix be 
positive definite. The results of [3] are intended to apply to those 
situations where it  is difficult to check  xvhether  the  test matrix is positive 
definite. Both sets of results are based on adding  a rank condition to a test 
for nonnegative definiteness. (Theorem 2 of this paper actually implies the 
main stability result of [3]. but the proof of this assertion is sufficiently 
long that it is more natural to treat the present results and those of [3] as 
independent criteria.) The notion of using a rank test to ensure that 
certain of the subsystems are “sufficiently well coupled” to the remainder 
was also exploited in the earlier paper [SI. 

11. DISSIPATIVE SYSTEMS 

Let 11, denote the input  and y, the output of the ith subsystem. Each 
subsystem may, in general. be nonlinear and/or infinite dimensional, and 
may  have multiple inputs  and  outputs. Let P ,  be the operator which 
truncates  a signal at time T. It is assumed that, for all T t m ,  P,u, and 
Pry, belong to some suitable inner product space. The notation ( u .  e ) ,  
means (P ,u ,  Pro). 

Subsystem i is called (Q,, S,, R,)-dissipative for matrices 0,. S,, and R ,  
where Q, and R,  are self-adjoint if the inequality 

( J , . Q , V , ; > ~ + ~ ( ~ , . ~ , ~ , ) T + ( U , . R , U , ) ~ ~ O  

is satisfied for all u, and all T <  m. 
Now let 

u= UCXl - Hv 

where u and  are vectors formed by concatenating all the u, and r; .  
respectively. uck, is an external input, and H i s  a  constant matrix. That is. 
the overall system is a linear interconnection of the possibly nonlinear 
subsystems. The overall system has input u,,, and  output J. 

Assume that all subsystems are dissipative in the above sense where the 
Q,. S,. and R ,  may  be different for each i .  Let Q=diag{QI.Qz:..}. 
S=diag{S,.Sz:..).  and  R=diag(R,. R 2 ; . . ) .  Form thematrix 

Q=SH+HTS7-H7RH-Q. (1) 

It was shown in [l]  that positive definiteness of 0 is a sufficient condition 
for input-output stability. With minor additional technical assumptions. 
it is also sufficient for Lyapunov stability. It was also show? in [I] that. 
for various choices of the Q,, Si, and R,, the condition Q>O implies 
many of the known stability criteria for interconnected systems. 

If Q is  merely positive semidefinite. stability is no longer guaranteed. It 

will be shown, however. that if Q > O  ut7d if some side conditions are 
imposed- for example. if one has the additional information that some of 
the subsystems have finite gain- then stability may still be deduced. 

111. A GENERAL STABILITY CRITERION 

Suppose now that each subsystem is dissipative with respect to two 
(Q. S .  R ) triples. For example. some of the subsystems might be knoun to 
be both passive and finite gain. More specifically. suppose that, for each i, 
subsystem i is both (QI”. S,‘”. Rj”)-dissipative and (Q:”, S,(’I, R\”)- 
dissipative. [This formulation is less restrictive than it might appear to  be 
because for each i such that  a second ( Q , ,  S,. R , )  cannot be found, we can 
always set (Q,”’.S,(”. R:”)=(O,O.O).] Under these conditions, i t  is clear 
that subsystem I is also (Q,”’+uQI”. S,”] +aS,‘”, Rj” -aR)”)-dissipative 
for any real positive (or zero) u. 

As  in Section 11. let Q=diag{QI”-aQI~’.Q:”+aQ~’. . .  .). and simi- 
larly for S and R .  Then the matrix 0 defined in ( I )  has the form 

Q = Q l l ’  + a o ) ‘ 2 ’  - (2) 

where Q‘” is  the matrix which  would result from (1) if only the 
( Q ; ’ ) ,  $’I) ,  RI”) were taken into consideration, and Q”’ similarly arises 
from the quantities with “2” superscripts. 

By setting a=O. we revert to the main result-of [l]: if 8‘” is positive 
definite. the interconnected system is stable. If Q”’ is merely nonnegative 
definite. stability can still be guaranteed if there exists any a>O such that 
Q in ( 2 )  is positive definite. 

More typica!ly. Q‘” will have no special sign properties. but we can 
ahvays write Q12’=Q8 -0, where QR and Qc are both nonnegative 
definite. 

Lemma: Let Qa, Q R .  Qc be three symmetric nonnegative definite ?I X n  
matrices such that 

rank[Q.4 Q B I = ~  
rank[Qa Q c I = r d [ Q A I .  

Then there exists a real a> such that QA  +a(QB-Qc) is positive 

Proof If QA is the zero matrix, the proof is trivial. Otherwise, choose 
definite. 

any a such that 

O<a< A A Q 4 )  

L , X ( Q C )  

w-herc An,=<(Qc) is the largest eigenvalue of  Q, and Abnz(Q4) is the 
smallest nomero eigenvalue of PA. It is then straightforward to shorn,, 
from the second rank condition. that Qa  -aQc is nonnegative definite. 
(This result is Lemma 2 in [3].) Then for any vector J we have 

v ~ ( Q . ~ - ~ Q ~ ) Y ~ O  

and 

. ~ ~ ( a Q ~ ) ~ 9 0 .  

If J is nonzero. the above two rank conditions imply that these quantities 
cannot be simultaneously zero, and our result now follows easily. v v v 

Theorem I :  Let Q‘”=Q, -Qc where both Q R  and Qc are nonnega- 
tive definite. Then  a sufficient condition for stability of the interconnected 
system is that the three conditions 

Q t l ’  2 0  

rank [ Q“’ Q,] = ?t 

rank[Q‘I’ Q,]=rank[Q”’] 

hold  \vhere t7 is the total number of outputs of all the systems. v v v 
Proof: The proof is obvious from the lemma. v v v  
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IV. EXAMPLE 

Suppose we have three passive systems and an interconnection matrix 

H =  - 1  1 [ : : -SI. 
Passivity corresponds to Q"'=O. R") =0, and S")=I (the unit matrix). 
After substitution in ( I ) .  we have 

541 

rank[Q D ] = n  

The matrix is nonnegative definite, but singular. so we cannot yet con- 
clude that the interconnected system is stable. 

Suppose, however, that the second subsystem satisfies the constraint 

( . ) ' 2 2 r 2 ) T 2 E ( U 2 ! U 2 ) T  

for some r > O .  That is, it is (l/c,O, - I)-dissipative. This allows us to 
write, from (I ) .  

Q"'=~'~)H+H~SS(~)T-HTRR(?)H-Q(Z) 

where S") is  zero. R'" = diag(0, - 1.0). and QC2)  = diag(O,I/c. 0). The 
result of this calculation is 

rank[@') H'KDKH]=rank[&"'] .  

It is a simple exercise to show that these conditions are, because D and K 
are diagonal, equivalent to the conditions stated above. v v v  

Notice  that K does  not  appear in the theorem statement. To apply this 
result. we only have to know which subsystems have finite gain. It is not 
necessq to know the gain bounds. 

If we apply this result to the example of Section IV, but without the 
side constraint on the second subsystem, it is easy to see that  a sufficient 
condition for stability is D=diag(O,O, I). The requirement is therefore that 
subsystem 3 have finite gain. In summary, the system of this example is 
stable if the second subsystem has a lower bound on  its gain or if the third 
subsystem has an upper  bound  on its gain. 
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Comments on Decentralized State Feedback  Stabilization 

=UT E. SEZER AND OZAY HiTSEYiN 
Clearly, the conditions of Theorem I are satisfied, so we may deduce that 
the system is stable. 

V. FINITE GAIN CONSTRAINTS 

An important special case arises when it is known that some of the 
subsystems have finite gain. That is, when it is known that subsystem i is 
(Q,,S,.R,)-dissipative(foralli)andthat!1);11r~k,llu,llT(forsomebut 
possibly not all i )  where the k ,  are finite, but probably unknown real 
constants. We assume. as before, that the (Q,, S,, R,) triples are used to 
form a matrix @I1 via (1). and  that Q ( l )  turns out to be nonnegative 
definite and singular. 

Let K be a diagonal matrix formed from the k , ,  with zero entries 
corresponding to those subsystems which are not known to have the finite 
gain property. Also let D be a diagonal matrix, wpith unit entries corre- 
sponding to those outputs with the "finite gain" property  and zeros 
elsewhere. Note that this formulation allows for the possibility of subsys- 
tems with multiple outputs, some of which have the finite gain property 
and some which do not. Forming Q"' as in Section 111, the result is 

Q(l) = D - H T ~ ~ ~ ~ .  

This leads to the following result. 

for stability are 
Theorem 2: With all matrices as defined above. sufficient conditions 

where n is the total number of outputs. 

and 
ProoJ From Theorem 1. sufficient conditions for stability are Q ( ' '  20 

A bstrucf-The  problem of decentralized  stabilization of interconnected 
systems using state feedback is revisited. Various aspects of the  problem 
are  briefly  discussed with examples. A conjecture,  which is believed to 
provide sufficient conditions for decentralized  stabilizability  of  intercon- 
nected systems is proposed along with the  supporting reasons. 

Recently a discussion was started by Wang [ I ]  about stabilization of 
interconnected systems composed of the subsystems 

using decentralized state feedback 

where A'= ( 1.2; . ., N ) .  Wang gave an example of a system consisting of 
N = 3  subsystems which cannot he stabilized by decentralized feedback 
although each subsystem as well as the overall system is controllable, thus 
showing that the corresponding result by Aoki and Li [ 2 ]  for the case 
N = 2  does  not readily extend to the case N 2 3 .  

We first would like to point out that the very intuitive proof suggested 
by Aoki and Li is, unfortunately, not correct. They suggest, as a stabiliza- 
tion procedure, to shift the subsystem eigenvalues by decentralized feed- 
back to locations far away from the imaginaq axis in the left-half 
complex plane, so that the resulting closed-loop system becomes weakly 
coupled [3], and, hence, stable. The critical point in this argument is 
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