
Dissbative Dvnamical Systems: 
Basii Input-butput and 4State 
Properties t 

by DAVID J. HILL aId PETER J. MOYLAN# 

Department of Electrical Engineering and Computer Sciences and the Electronics 

Research Laboratory, University of California, Berkeley, CA 94720 

ABSTRA~: A complete account is given of the theory of so-called dissipative dynamical 
systems. The concept of dissipativeness is defined as a general input-output property which 
includes, as notable special cases, passivity and other properties related to finite-gain. The 
aim is to treat input-output and state properties side-by-side with emphasis on exploring 
connections between them. The key connection is that a dissipative system in general 
possesses a set of energy-like functions of the state. The properties of these functions are 
studied in some detail. It is demonstrated that this connection represents a direct generali- 
zation of the well-known Kalman-Yakubovich lemma to arbitrary dynamical systems. 
Applications to stability theory and passive system synthesis are briefly discussed for 
non-linear systems. 

I. Introduction 

The mathematical representation of physical systems generally takes one of 
two forms: an input-output description, where the system is regarded as a 
mapping of input functions to output functions; or a state-space description, 

which describes the system in terms of trajectories in a metric space (or flows 
on appropriate manifolds). These choices of representation are exemplified by 
the familar convolution (or transfer function) and differential equation rep- 
resentations of linear systems. The role of the relationship between these 
representations and the evolution of system theory (particularly control and 
network theory) is, of course, well-known. It is now accepted that each 
approach complements the other to provide a firm foundation for system 
theory. Theoretically, the input-output description provides the benefits of 
abstraction; because it is free of details about the internal description, basic 
results in system theory can be viewed more easily. In system design, this 
approach facilitates designing for a prescribed response to a specified class of 
inputs. When internal constraints are to be accounted for, the extra informa- 
tion concerning the state-space is needed. Studies in this setting facilitate 
designing for prescribed internal system modes and qualitative behaviour of 
trajectories. Evidently, the foundations of system theory must include a study 
of the relationships between the two descriptions of a system. There is a 
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massive literature on this topic for linear systems with many of the basic results 
for the finite-dimensional case given in (1). 

Such a theory for general non-linear systems does not exist and would not 
appear to be quickly forthcoming. However, progress is being made by 
restricting the class of non-linear systems and attempting to generalize as many 
of the linear systems results as possible (2,3). Certainly such an approach is 
essential for obtaining algebraic or graphical tests for system structural proper- 
ties. On the other hand, if we confine our attention to the study of qualitative 
properties, to a large extent the theoretical developments can proceed without 
restrictive a priori structural constraints. This is illustrated by the area of 
stability theory (4-6), where the main theorems are derived for general 
dynamical system representations. Taking this approach, of course, puts com- 
putational aspects aside; at least until more system structure is imposed. 

It is the intention of this paper to study a general theory for relating 
input-output and internal system qualitative behaviour. We assume that the 
systems satisfy a general time-domain inequality called dissipativeness (which 

in the memoryless system case corresponds to its graph being confined to lie in 
a sector). It is then possible to give, in a very explicit manner, the implications 
of this input-output property on a state-space representation. 

The study of so-called dissipative systems was initiated by Willems (7) in 
order to tie together ideas common to network theory and feedback control 
theory, as well as thermodynamics and mechanics. This work can be seen as 
evolving from a series of studies beginning with the well-known Kalman- 
Yakubovich lemma (8,9) and its applications; see, for instance, Refs. (10-13). 
These studies can be interpreted as exploring the usefulness of the concept of 
passivity (or positive real transfer functions). 

The essence of dissipative system theory is the broadening, in a theoretical 
sense, of the meaning of energy storage. The property of dissipativeness was 
defined in (7) essentially as a generalization of the property of passivity via an 
inequality based on a state-space description. Associated with a dissipative 

system is an energy-like framework akin to that occurring for physical systems; 
except in that, in general, the stored energy functions are non-unique. In a 
subsequent publication (14), Willems introduced a weaker property which he 
called cycle-dissipativeness, which amounts to dissipativeness on cyclic mo- 
tions. For linear systems, it was shown that these concepts unify many impor- 
tant system properties such as stability, reciprocity and reversibility with energy 
storage ideas (7). In summary, dissipativeness was introduced as a property 
which reflects something of the internal properties of the system. 

The present authors have been interested in dissipative systems primarily as 
a vehicle for producing very general stability results for interconnected systems 
(15-19). In the process of carrying out this work extensions to the theory in 
(7,14) were made, i.e. consideration of dissipative systems in a purely operator 
theoretic setting, clarifying the role of minimality of the state-space representa- 
tion, and providing algebraic tests for dissipativeness of classes of non-linear 
systems. Some of these extensions appeared in (20), whereas others are 
scattered throughout the various papers on stability. Much of this work was 
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carrying over known results for special cases to the more general situation to 
provide as general a framework as possible for applications. It should also be 
noted that some extensions to the theory in (7,14) were also provided in (21). 
The purpose of this paper is to collect together and further extend the essential 
features of the theory of dissipative systems. Some of the results are only 
variations of those given by Willems (7,14,21), but the overall intention is to 
provide a complete background for applications of the theory. 

The structure of the paper is as follows. Section II defines dissipativeness 
with various refinements (including an input-output viewpoint of cyclo- 
dissipativeness) in an operator theoretic setting. A known result relating to 
causality and passive operators (22) is generalized. Sections III and IV are 
based on Ref. (20): considerable attention is given to the implications of 

dissipativeness (on a state-space representation) in terms of the existence of a 
set of energy-like functions. The properties of these functions are studied. To 
demonstrate the usefulness of the theory, Section V presents two important 
applications: the relation between input-output and Lyapunov stability con- 
cepts; and a structure result for passive systems which is fundamental in 
network synthesis. Section VI gives a survey of the known results for testing 
dissipativeness properties. Since this introduces computational aspects, the 
structure of the state space is important. In particular, only finite-dimensional 
systems are considered in detail. The results also provide a means whereby 
energy storage functions can be calculated. 

ZZ. Input-Output Theory of Dissipative Systems 

2.1. Dynamical systems 

The usual input-output description of a dynamical system is via a mapping 
between appropriately defined function spaces. There is some variability; e.g. 
one can choose to use relations or operators. Such matters are inessential to 
the ideas of the sequel. We will use an operator setting (4). 

The system operator is defined on so-called signal spaces. We now give a 
formalism of this concept. Let T be the set of instants of time which are of 
interest. Let V be an inner product space and -Y be the class of functions on T 
taking their values in V. Suppose then that a real-valued inner product (. , -) is 
defined on a subset of -Y (usually derived from the inner product on V). The 
associated small signal space is given by V p {v E Y : (v, IJ) < x}. We assume that 
“v^ is a Hilbert space; an example being the space of square integrable 
functions f : R, -+ KY’ denoted by L;([w+), where [w, = [to, 00). 

To allow for functions which are unbounded in some sense, it is convenient 
to extend this space of functions. We introduce the truncation operator PT on 
‘Ir which satisfies 

where 8 denotes the zero vector in V. It is convenient to use the notation 
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vT = PTv. Using the truncation operator, we define the signal space by V, A 
(v E “1’ : (I.+, vT) <wVTE r}. Obviously, V, is the space of functions whose 
truncations are small signals in the sense previously defined. A concept of 
boundedness is provided on V by the norm 11. (( = (. , .)g. In the sequel, it is 
convenient if the scalar product is required to have the following properties: 
(Pl) For all v E V,, the function T -+ (h.+(I is monotonically increasing and for all 

(P2) For all u, v~V,,forall TEE, (uy,v~)=(u~,v)=(u,v~)~(u,v)~ 
We can now introduce the definition of a dynamical system in input-output 

form. Suppose that U and Y are small signal spaces with appropriate truncation 
operators P: and PC which define the signal spaces U, and Y, respectively. U, 
is called the input signal space and Y, is called then output signal space. 

Definition 1 

A dynamical system input-output representation is an operator H: U, + Ye. 
Note that this definition does not include causality of the operator H; that is, 

the condition that PGHPF= PCH. Such a restriction is often included in the 
definition for a dynamical system. However, in system theory the need to 
consider non-causal systems arises sufficiently often to warrant consideration of 
causality as a separate issue. Non-causal systems are of special importance in 
deriving general results on stability and instability for feedback systems (4). 

A special class of operators which we need to consider are called memory- 
less. These are both causal and anticausal (22). A memoryless self-adjoint 
operator T:V -+ V is said to be positive definite (non-negative definite) if 
(v, TV) > 0 for all v E V, v # 0 ((v, TV) 2 0 for all v E V). T is said to be negative 
definite (non-positive definite) if the inequality signs above are reversed. 

2.2. Dissipative systems 

We now define dissipativeness for the system operator H defined above. In 
the following definition, let Q :Y, -+ Y,, S : U, -+ Y, and R : U, -+ U, be 
arbitrarily chosen memoryless bounded linear operators, with Q and R self- 
adjoint. 

Definition 2 
The dynamical system H is dissipative with respect to the triple (Q, S, R) iff 

(Y, QY&+~(Y, Su),+(u, Rn),rO 

for all TE 7 and all u E U,. 

(2) 

This definition was presented in (18) (with LJ = R” and Y =Rp SO Q, S, R 
could be taken as appropriately dimensioned real matrices). For present 
purposes, it is necessary to introduce weaker versions of this property. These 
have not been presented in a dissipativeness sense previously; however, some 
related ideas are certainly well-known in special cases. We delay for now a 
more complete discussion of this point. 
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Rather than require the inequality (2) to hold for all input signals, it is of 
interest to suppose that it holds only for a subset of the signal space. With this 
thought, we are led to attach particular significance to the set 

K(H)~{~EU:~=HUEY}. 

In anticipation of a later discussion, this set K(H) is of use in formulating tests 
for instability-there we ask about the existence of some u E U for which y&Y. 

Definition 3 

The dynamical system El is ultimately virtual-dissipative with respect to the 
triple (0, S, R) iff 

(y, Qy)+2(y, Su)+(u, Ru)zO 

for all u E K(H). If K(H) = U, the system is said to be ultimately dissipative. 
We note that ultimate dissipativeness applies in the special case where the 

system can be defined on small signal spaces as the operator H: U -+ Y. For 
this class of system, it is obviously a weaker property than dissipativeness; 
roughly speaking, the system is required to be dissipative only in the limit 
T-+a. 

In view of the established use of various names for special cases of the 
inequalities (2) and (3), some comments on this aspect are in order. Histori- 
cally, two important special cases relate to passive and scattering operators in 

circuit theory and the associated concepts of positive real and bounded real 
matrices (10,22). The relationship between this history and dissipativeness has 
been dealt with elsewhere (7,16). Passivity corresponds to dissipativeness with 
respect to (0, iJO) where I is the identity operator and we assume that U = Y. 
In the literature ultimate passivity has been referred to as positivity (4,22). A 
scattering operator is dissipative with respect to (-1,0,1). Operators satisfying 
the ultimate dissipativeness version of this property are commonly called 
contractive (22). One unfortunate clash of naming occurs in (22); where, 
instead of the term scattering operator, the operator is said to be semidissip- 
ative. For obvious reasons, we cannot accomodate that particular nomenclature 

here. A slight generalization of the scattering operator definition is useful in 
stability theory (4,17): a system is said to have finite gain if it is dissipative with 
respect to (-1,0, k21), where k is some fixed scalar. The special forms of 
dissipativeness mentioned above in no way exhaust the list of useful triples 

(Q, S RI. 

2.3. Dissipativeness and causality 

The interrelationship between passivity, positivity and causality (and scatter- 
ing operators, contractive operators and causality) is well-known (4,22). For 
the sake of completeness, we will give the more general version of these results 
which relate dissipativeness to ultimate dissipativeness. 

Theorem 1 

Suppose that the operator H is causal and ultimately dissipative with Q 
non-positive definite. Then H is dissipative. 
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Proof: Since H is ultimately dissipative it satisfies (3) for all u E U. Now 
consider an arbitrary u EU,. From (3), we can write 

(HP+, QHP;u) + 2(HP;u, SP;u) + (P;u, RP;u) 2 0 

Dissipativeness follows from the causality of operators Q, S, R and H and 
properties (Pl), (P2) of the innerproduct: it is easily seen that (PFu, RP+)= 

(u, Ru), and (HPFu, SPFu) = (y, Su),. The remaining term can be treated as 
follows. Since Q is a non-positive definite self-adjoint operator on a Hilbert 
space, it can be factored according to Q = -M*M where M is a memoryless 
operator on Y and M* denotes its adjoint operator (23). Then 

(HP& QHP;u) = - ~\MHP;u(I 

5 - llP;MHP+\(* from (Pl) 

= -I~P$MHu\I from causality of M and H 

= (Y, QY )T . 

The inequality (2) follows. 
As an immediate consequence of Theorem 1, we can say that, for a causal 

dynamical system H: U -+ Y and Q non-positive definite, dissipativeness and 
ultimate dissipativeness are equivalent. For linear operators, more explicit 
results can be given. It is well-known that certain types of dissipativeness imply 
causality of linear operators (22). Such results really fall outside the scope of 
the remainder of the paper, so we shall suppress further consideration. 

2.4. Lossless operators 

As a final consideration, we define a strong form of dissipativeness. 

Definition 4 

The dynamical system R is lossless with respect to the triple (Q, S. R) if it is 
dissipative and satisfies 

for all u EK(H). 

(Y> QY)+~(Y, Su)+(u, Ru)=O, (4) 

There are obviously many possible variations of this definition. The signifi- 
cance of the concept will become clearer in later sections. Note that if 
K(H) = U and the system is causal, then losslessness is equivalent to Eq. (4) 
holding for all u E U. More generally, though, we do not insist that (4) should 
hold for all u EU. To see why, consider an example where H is a single 
integrator; that is, (Hu)(t) = j:,,u(u) da and the small signal space is L2(R+). It is 
easily seen that H is lossless with respect to (0, I, 0) according to definition 4, 
which agrees with the commonly accepted intuitive idea that an integrator 
should be considered to be lossless. However, Eq. (4) is satisfied only when 
u E K(H), and not otherwise. 
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III. State-Space Theory of Dissipative Systems 

3.1. Dynamical system representation 

In this section, we present a way in which a dynamical system can be 
represented in state-space form. A more complete discussion may be found in 
ref. (24). We confine our attention to continuous dynamical systems defined on 
the half-line R,. Similar descriptions apply to other choices of 7. 

To maintain consistency with Section II, we denote the admissible input and 

output function spaces U, and Y, respectively; however, for purposes of the 
following definition the topological associations are inessential. (A usual re- 
striction is just that U, and Y, be closed under concatenation). We introduce 

the so-called state space X which is just an abstract set. 

Definition 5 
A dynamical system state-space representation is defined through the sets U, 

U,, Y, Y,, X and the mappings $ and r. The map 4 : lR: x XX U, + X is the 
state transition function; it satisfies the axioms: 
(consistency) $(to, t,, x0, u) = x,, for all toELF& X~E X, and u EU,; 
(determinism): $(tl, to, x0, UJ = $(tl, to, x0, u2) for all (tl, to) EIW:, X~E X, and 

ul, u2EU, satisfying u](t)= u2(f) for t,Itst,; 
(semi-group property): +(t*, to, x0, u) = $[t2, tl, $(tl, to, x0, u), u] for all to5 

t,st,, x~EX, and UEU,. 

The map r : XX U X R, + Y is the read-out function. It is such that the 
function rLQ(t, t,,, x0, u), u(t), t] defined for t 2 to is, for all X~E X, t,,E[W and 
u EU,, the restriction to [to, ~0) of a function y EY,. We also assume that the 

system is unbiased in the sense that $(t, t,, 0,O) = 0 for all (t, to) EIW: and 
r(0, 0, t) = 0 for all t ER. 

The above definition views the dynamical system through a state x which is 
intermediate between the input u and output y. We write the state and output 
at time t as x(t) = $(t, to, x0, u) and y(t) = r[$(t, to, x,,, u), u(t), t] respectively. 
We can consider the system as a collection of trajectories in the state-space; 
each emanating from an initial condition and guided by the particular input. 
The theory of such abstract objects when X is a metric space is vast. We will 
refer to some of this in later considerations. 

In the sequel, we shall require at times that the dynamical system be 
controllable and/or reachable. 

Definition 6 

A state X~E X of a dynamical system in state-space form is said to be 
controllable at time to ER if there exists a t, 2 t,, and a u EU, such that 
$(tl, to, x,,, u) = 0. The dynamical system i’s said to be controllable if every state 
X~E X is controllable for all ~,,ER. 

Definition 7 

A state ~,EX of a dynamical system in state-space form is said to be 
reachable at time to ER’ if there exists a tpl 5 to and a u E U, such that 
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+(f,, t-r, 0, U) = x0. The state space of the dynamical system is said to be 
reachable if every state X~E X is reachable for all tocR. 

3.2. Dissipative systems 

The concept of dissipativeness has been introduced as an input-output 
property for dynamical systems. In the remainder of Section III, we develop at 
length the implications of this property on a state-space representation. The 
treatment is adopted from 20 (except that in (20) the system is assumed to be 
stationary). 

With reference to Section II, we now suppose that the system input-output 
description is based on U = G(R+) and Y = L2p(R+) where y = Hu is a zero- 
state response. We now introduce the concept of a supply rate: this is the 
function w : U X Y -+ R given by 

w(u, y) = y’Qy + 2y’Su + u’Ru, (5) 

where Q E Rpxp, S E R!*“” and R ~[w”‘“‘” are constant matrices, with Q and R 
symmetric. Writing w(t) = w[u(t), y(t)], evaluated along the system motions, it 
is then obvious that inequality (2) becomes 

I 
‘I 

w(t) dt 20 (64 
fn 

for all t, 2 to and all u E Lz, whenever the initial state x(t,) = 0. We usually say 
that the system is dissipative with respect to the supply rate w(*, *) in this 
context. (Sometimes, for convenience, we will drop the phrase “with respect to 
supply rate w(. , a)“; it being always understood that a particular given supply 
rate is under consideration). 

The theory to be discussed carries abstract energy connotations (as does the 
term dissipative itself). This derives from the interpretation of the supply rate 
as an input power; consequently, the inequality (6a) restricts the manner in 
which the system absorbs energy. Before considering this interpretation 
further, we make another definition. 

Definition 8 

A dynamical system is defined to be cycle-dissipative iff 

I 
‘1 

w(t)dtzO, 
f” 

(6b) 

for all t, 2 to and all u EL?, whenever x(t,j = x(tJ = 0. 
Note that cycle-dissipativeness does not immediately correspond to a previ- 

ously defined input-output property, because of the role of the final state x(tl). 
However, cycle-dissipativeness is closely related to ultimate virtual- 
dissipativeness. Another point to note is that the quadratic nature of w( ., * ) is 
inessential to Definitions 7 and 8; and also to virtually all that we present in this 
section. It is required only for consistency with Section II. 
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Theorem 2 

Suppose that the system H is observable in the sense that u E K(H) implies 

the zero-state response satisfies !@J x(t) = 0. Then ultimate virtual- 

dissipativeness is equivalent to cycle-dissipativeness. 
Proof: Suppose that the system is ultimately virtual-dissipative. Then Eq. (3) 

can be written as 

la 
w(t) dt 20, 

f0 
(7) 

for all UE K(H), whenever x(t,)=O. 
Now consider any u ELM which takes the system from x(t,) = 0 to 

x(tl) = 0. Then choose P,,u ~0. Since the system is unbiased, it follows that 
Ptlx ‘0, P,,y =O (and u EK(H)). Then Eq. (7) can be written as 

I 

‘1 
w(t) dt 20. 

(0 

That is, the system is cycle-dissipative. 
For the converse, suppose that the system is cycle-dissipative. Consider any 

u E K(H). Smoothness that Eq. holds (considering limit tl -+ 03 in 
the definition of cycle-dissipativeness). 

This theorem, with Theorem 1, gives interrelationships between the various 
forms of dissipativeness. As a consequence of Theorem 2, it is reasonable to 
use the terms virtual-dissipativeness and cycle-dissipativeness interchangeably; 
the latter term has historical precedence (14), but really only carries intuition 
for state-space representations. As a general comment, the ultimate versions of 
dissipativeness relate the total output function to the total input function. On 
the other hand, dissipativeness and cycle-dissipativeness are concerned with 
the time evolution of these functions as well. In a sense, the differences 
evanesce for causal systems; but it will be obvious in Section V how such 
concepts are of importance in the study of stability. 

Cycle-dissipative systems exhibit a net absorption of energy along any 
trajectory which starts and ends at the origin of X. A cycle-dissipative system 
might, however, produce energy along some initial portion of such a trajectory; 
if so, it would not be dissipative. On the other hand, every dissipative system is 
cycle-dissipative. 

(In interpreting these comments, it should of course be recognized that the 
“energy” in question need have no physical significance. The term “energy” is 

being used here simply to mean the quantity defined by the integrals in the 
above definitions). 

As an example, suppose that the system under consideration is an electrical 
network, whose elements are constant resistors, inductors and capacitors. Let 
u(t) be the vector of port currents, and y(t) the vector of corresponding port 
voltages. Then it may be shown [via Tellegen’s theorem (25) for example], that 
the system is cycle-dissipative with respect to supply rate w(u, y) = u’y, pro- 
vided that all resistances are non-negative. If in addition all inductances and 
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capacitances are non-negative, then the system is dissipative (with respect to 
the same supply rate). 

In the above example, we can, via physical reasoning, define a stored energy 
for the network. For a more general abstract system, physical reasoning fails 
us, but we can at least define possible candidates for the name “stored energy”. 
Consider, then, the following two functions. 

Definition 9 

The required supply & : X X R -+ R, is defined by 

*’ 4,(x0, to) = inf 
s 

w(t) dt 
ueu.,t-,=% f_, 

with boundary conditions x(t_J = 0, x(t,,)= x0 where Iw, =RU{w} is the ex- 
tended real line. The virtual available storage 4: : XX R + R, is defined by 

4:(x,, t,) = - inf 

with boundary conditions x(&J = x0, x(tl) = 0. 
To simplify the following discussion, we can arbitrarily assign the value --CO 

to the infima if the boundary conditions can be met, but the infima fail to exist. 
If the boundary conditions cannot be met, we can similarly assign the “in- 
fimum” a value of +m. 

The required supply is the least amount of energy required to excite a system 
to a given state; the virtual available storage is the maximum amount that one 
can extract from the system when starting from a given initial state, under the 
constraint that the final state must be zero. In general, there are no a priori 
bounds on these two functions-they need not be finite for any given x0. 
However, we have the following (obvious) property. 

Lemma 1 

Regardless of dissipativeness or cycle-dissipativeness, 
(a) &(x0, t,,)<m for any state x,, reachable at t,, and 
(b) +x(x,, to)>-” for any state x0 controllable at to. 
Proof: Directly from the definitions of controllability and reachability. 
For a cycle-dissipative system, we have a slightly more informative result. 

Lemma 2 

Let the system be cycle-dissipative. Then 

and 
4X(0, tcl) = MO, to) = 0 

for any state X,EX and &EL% 
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Proof: 
If x0 is both controllable and reachable at to, we have the inequality 

w(t) dt+ w(t)dtsO 

where the trajectory is chosen to pass through the points x(t-J = x(tl) = 0, and 
x(t,) = x0. The result then follows from the definitions of & and 48. If x0 is 
uncontrollable and/or unreachable, the result still holds since we have 
&(x0, to) = 00 2 +:(x0, to) or &(x0, to) 2 +X(x,, to) = -00, as appropriate. 

In particular, for a controllable and reachable cycle-dissipative system we 
have -~<$~(x, t)<&(x, t)<w for all x E X, t ER. Notice that neither the 
controllability nor the reachability constraint can be dropped in obtaining this 
result. 

Let us now define a third possible candidate for “stored energy”. 

Definition 10 

The available storage & : XX R + [w, is defined by 

I 
‘1 

&(x0, to) = - inf w(t) dt 
uEU.,f,=f” f0 

with boundary conditions x(t,J = x0, x(tl) free. 
Immediately we have C&(X, t)zO, and &(x, t) 24x(x, t), for all x and t for 

which the functions are defined. (Note, too, that these inequalities do not 
depend on cycle-dissipativeness). In general, cycle-dissipativeness will not 
provide an upper bound for &, nor will controllability nor reachability provide 
any such bound. For dissipative systems, however, we can find such a bound. 

Lemma 3 
Let the system be dissipative. Then 

for any X~E X and toElF& 
Proof: 
Similar to the proof of Lemma 2. 
In particular, for a reachable and controllable (reachable) cycle-dissipative 

(dissipative) system, we have 

-~<K%, t)‘$r(x, t) <~[0~4~,(X, t)‘&,(x, t><m] 

for ail x, t. A more detailed treatment of the implications of reachability and 
controllability is given in the next section. Note that controllability is of only 
minor interest for dissipative systems, except insofar as dissipative systems 
partake of the properties of cycle-dissipatiave systems. 
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IV. Storage Functions 

So far, we have defined three functions which might represent the stored 
energy of a dissipative or cycle-dissipative system. Except in some special 
cases, these functions differ in value from one another. This means that, lacking 
any further information about the internal structure of a system, we cannot 
uniquely define the stored energy of the system. We can, however, describe a 
whole class of functions which are candidates for the name “stored energy”. 
These functions were defined by Willems (7,14) in the following way. 

Definition 11 

A function C#J : XxR + IR, is called a virtual storage function if it satisfies 
c$(O, t) = 0 for all t and 

s 
*’ Nxcl, to)+ w(t) dt 2 4(x,, G (8) 

f” 

for all tl 2 to and all u E I-J, where x(t,) = x,, and x(tl) = x1. If in addition 
4(x, t) 20 for all x, t then C$ is called a storage function. For time-invariant 
systems, we restrict attention to (virtual) storage functions which are indepen- 
dent of time t. 

The constraint 4(0, t) = 0 is inessential, and 4(x, t) ~-0 could be replaced by 
C#J(X, t)?&(O, t) for all x, t. That is, the addition of a non-zero +(O, t) would 
leave inequality (8) unaffected. However, to simplify later discussions concern- 
ing orderings between (virtual) storage functions, it is desirable to insist from 
the outset that the functions have no non-zero 4(0, r) “bias” component. 
Actually, Definition 11 departs a little from the formulation in (7,14) by 
requiring 4(x, t) 2 $(O, t) for all x, t. Briefly, the motivation for the difference is 
as follows: in (7,14) dissipativeness is introduced as the property of a state- 
space representation whereby there exists a storage function. However, the 
present discussion has chosen to start with an input-output definition which, 
for instance, implies &a(x, t) 2 &(O, t) = 0 for all x, t. A further slight difference 
to (7,14) is that to allow a treatment of nonminimal systems, we do not rule 
out the possibility of infinite values of the (virtual) storage functions and discuss 
existence in the usual sense as a separate issue. 

To relate this definition to the results of the last section, we have the 
following results. 

Lemma 4 

The functions ~$2 and 4, are virtual storage functions for a cycle-dissipative 
system. For a dissipative system, cb, and c$~ are storage functions. 

Proof: We shall show the method of proof for & only; the other two cases 
are similar. First, we note &(O, t)=O for all t follows from Lemma 2. 

Suppose that x0 and x1 are reachable states. From the definition of &,, we 
have 

Mx1, G 5 [I’ w(t) dt 
1 
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for any u taking x(t_l) = 0 to x(tl) = x1 (provided of course that t-l< to). In 

particular, let t_l, to and u on [t-1, to) be such that x(6,) = x0 is reached in an 
optimal manner. Except for the boundary conditions x(t,) = x0 and x(h) = x1, u 
is still free on the time interval to to t,, and we have our result. 

If x0 and/or x, is unreachable, the result still holds. For example, if x0 is 

reachable but x1 is not, then x1 cannot be reachable from x0; in other words, 
j:;w(t) dt cannot be finite for any transfer between x0 and x1. The remaining 
cases can be treated by similar arguments. 

Theorem 3 

A system is cycle-dissipative iff there exists a virtual storage function +(with 
--a< 4(x, t) (00 for all x E X which are both controllable and reachable at 

t E(W). 
Proof: Suppose first that some 4 exists such that Eq. (8) is satisfied. Then 

certainly 4(0, t) = 0 is well-defined. Setting x0 = x, = 0 in (8) we retrieve the 
definition of cycle-dissipativeness in (6b). 

Conversely, suppose that the system is cycle-dissipative. Then from Lemma 
4 r#~~ and +a are both valid virtual storage functions. From Lemmas 1 and 2 
these functions take on finite values at every point which is both controllable 
and reachable. 

For dissipative systems, we have the following result. 

Theorem 4 
A system is dissipative iff there exists a storage function 4 (with 0 5 4(x, t) < 

CC for all x reachable at t E 172). 
Proof: If the system is dissipative, then Lemmas 1, 3 and 4 give that both C& 

and +r are storage functions satisfying the conditions of the theorem. 
For the converse, suppose that some storage function 4 exists. Setting x0 = 0 

in (8), we have 

I 

*, 
w(t) dt ‘4(x,, 0 

to 

Since 4(x,, t,)?O, it follows that the system is dissipative. 
The following result is also worth noting. 

Theorem 5 
For a cycle-dissipative time-invariant system, 

I 

‘1 
w(t) dtr0 

f0 

for any x(t,) which is both reachable and controllable, any t, zz to, and any 
u EU, such that x(tl) = x(t,). 

Proof: Directly from (8) and the fact that +r (and, for that matter, +x) is a 
virtual storage function which takes finite values for all controllable and 
reachable states. 

In other words, if a time-invariant system is cycle-dissipative-that is, if it 
absorbs energy for any cyclic motion passing through the origin-then it 
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absorbs energy during any cyclic motion, provided that at least one point on 
the state trajectory is both reachable and controllable. 

4.1. Properties of the storage functions 

In this section, we consider some of the properties of the set of all (virtual) 
storage functions. Our first two results show that one can place tight upper and 
lower bounds on the set of all virtual storage functions, and equally tight upper 
and lower bounds on the set of all storage functions for a dissipative system. 
The latter result was given in (7). 

Theorem 6 
Let C#I be any virtual storage function for a cycle-dissipative system. Then 

43x, t) 5 4(x, t) 5 &(x, t) 

for all XEX and tc[W. 
Proof: To establish the upper bound, let x1 be any state reachable at tl, and 

let UEU, be any control taking x(t,)=O to x(tl)= x1. Then from Eq. (S), we 

have 

4(x,, h)(- “du, Y) a. I 1” 

Since this is true for all U, we have 

4(x,, G 5:;; jtlw(u, y) dl= &(x1, tl) 
* f” 

which establishes the result. (For unreachable states, there is of course nothing 
to prove). The lower bound is established by a similar argument, based on 
controls which take x(t,) = x0 to x(tl) = 0, with x0 being any controllable state. 

Theorem 7 
Let 4 be any storage function for a dissipative system. Then 

05&(x, t)s4(x, t)s4,(x, t) 

for all XEX and t6R. 
Proof: The upper bound follows of course from Theorem 6. To show that 

4 ~4~,, consider any trajectory leaving x(tJ = x0_ Then, from (8) we have 

4(x,, to) 24(x,, h) - I *‘w (u, y) dt 2 4(x,, tJ + 4a(xo, 6,) 
f” 

where x1 = x(t,). Since 4(x,, tl) 20, regardless of the value of x1, we have our 
result. 

Theorem 7 has an interesting corollary. Recall that 4r(x, t) is finite precisely 
when x is a reachable state, but that reachability with dissipativeness is a 
sufficient condition for finiteness of 4a(x, t). These conditions are not necessary 
and in general there appears to be no other simple conditions which guarantee 
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that C& is well-defined. However, we may at least deduce the following result: 
if there exists any storage function which is finite for all x E X and t E [w then 

4,(x, t) is also finite for all x E X and t ER. 
Another interesting result is that the set of all virtual storage functions, for a 

given system and supply rate, is a convex set. 

Theorem 8 
Let C#Q and & be any two virtual storage functions for a cycle-dissipative 

system. Then 

4(x, t) A (.u&(x, t) + r1- al&(x, t) 

is also a virtual storage function, for any scalar (Y such that 0 5 (Y 5 1. 
Proof: If both & and & satisfy Eq. (S), then clearly 4 as defined above will 

satisfy (8). 
Of course, the above theorem also holds for storage functions of a dissipative 

system: for if C#Q and & are both non-negative, 4 will also be non-negative. In 
other words, the set of storage functions is a convex subset of the convex set of 
all virtual storage functions. 

4.2. Equivalences for reachable systems 

At various points in the above, the role of reachability and controllability of 
the state x has been carefully discussed. It is now a straightforward consequ- 
ence of previous results to give some important equivalent statements of 
(cycle)-dissipativeness when the system is reachable (and controllable). 

Theorem 9 

Assume that the system is reachable and controllable. Then the following 
equivalences hold: 

(i) The system is cycle-dissipative; 
(ii) C&(X, t)>-m for all XEX and tell and &(O, t)=O for all tE[W; 

(iii) &x(x, t) -=c 00 for all x E X and t E R and +z(O, t) = 0 for all t ~58. 
Proof: Follows easily from Theorems 3 and 6 and Lemmas 1, 2 and 4. 

Theorem 10 
Assume that the system is reachable. Then the following equivalences hold: 

(i) The system is dissipative; 
(ii) 4r(x, t)?O for all XEX and tg[W and &(O, t)=O for all tE[W; 

(iii) +a(x, t)<a for all XEX and teR and &(O, t)=O for all t6R. 
Proof: Follows easily from Theorems 4 and 7 and Lemmas 1, 3 and 4. 
The results of Theorems 9 and 10 carry very reasonable interpretations. For 

example, a reachable system is dissipative iff we can only extract finite energy 
at each x E X and there exists a point (labelled the origin) from which no 
energy can be extracted. At this point it is convenient to note how Theorems 3, 
4, 9 and 10 provide a connection between our definitions of dissipativeness and 
cycle-dissipativeness, and those of Willems (7,14). In (7,14), a system is 
defined to be dissipative (cycle-dissipative) if there exists a storage function 
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(virtual storage function&deleting our constraint 4(.x, t) 5 +(O, t) = 0, 
[4(0, t) = 0] satisfying Eq. (8) and finite for all x and t. It can be seen that the 
differences between these alternative definitions vanish when controllability 
and reachability assumptions are imposed and the origin can be regarded as a 
point at which no energy is stored. It should be noted that some consideration 
of the relation between input-output and state-space formulations of dissipa- 
tiveness appeared in (21) with results related to those given here. 

4.3. Dissipation delay 

Although cycle-dissipativeness is essentially an input-output property of a 
system, the virtual storage functions are functions of the internal state. If a 
virtual storage function is thought of as the stored energy of the system, then 
different virtual storage functions can be thought of as corresponding to 
different internal realizations of the given input-output mapping. The meaning 
of the word “realization” at this point is, of course, not meant to be precise. 

For any particular realization, we can define a dissipation function 
D(x, u, to, tl), via a “conservation of energy” equation 

dx(to), toI + I “w(O dt = 44x(h), hl+ D(x(to>, u, to, h). (9) 
t0 

Notice that D depends only on the given input-output mapping and supply 
rate, and on the particular choice of the virtual storage 4. D(x, u, to, tJ 
represents the total energy dissipated in the time interval from to to tl when the 
system is started in state x and is subjected thereafter to control U. From Eq. 
(8), D(x, U, to, tl) 2 0 for all x, u and tl 2 to (assuming of course that the system 
is cycle-dissipative, and that 4 is one of its virtual storage functions). 

If [c#J, D] is any pair satisfying (9), we shall call [&, D] a realization of the 

system. 
Notice that the quantity 

I 
fl 

w(t) dt = 4$x(h), hl- ddx(~o), ~ol+D(x(~o), u, to, h) 
fo 

is an invariant for any given input-output mapping and supply rate, since the 
left side of the equation does not depend on the particular realization chosen. 
In particular, we have the following lemma for stationary systems. 

Lemma 5 

Let [#Q, Dl] and [&, Dz] be any two realizations of a time-invariant 
system. Then 

D,(xo, u, to> h) = &ho, u, to, h) 

for any x0 for which both &(x0, to) and &(x0, to) are finite, any tl 2 to and any 
u such that x(tJ = x(t,) = x0 for some to and tl. 
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Proof: For any u, we have 

4JdtA hl- 4,[x(toL &,I + D,[x(t,), u, to, hl 

= 4ddhL hl- 4JdtoL to1 + Dz[x(to), u, to, tol. (10) 

Setting x(&j = x(t,> and using time-invariance, the result follows. 
What this means is that the dissipated energy, for cyclic motions only, is a 

function only of the input-output map, and does not depend on the particular 
internal realization. It might happen, though, that some realizations dissipate 
most of the energy in the early part of the cycle; while for others, there could 
be an initial period during which very little energy is dissipated. This motivates 
the definition below. 

Definition 12 
Let [+,, DJ and [&, DJ be two realizations of the same system. Then 

[&, RI has less dissipation delay than [c#+, DJ, written [&, DI]r[&, DJ, if 

for all u E U, and all t, I to. 
[It is important to notice that there are three possibilities: either [41, DJ f 

[&, DJ or [&, DJ -c[&, DJ, or [&, DJ and [&, DJ are incomparable]. His 
not hard to show that “ l ” is a partial ordering. 

Theorem 11 
Let [&, DJ and [&, 0-J be any two realizations of a given system. Then 

[&, DJ f [&., DJ iff 4,(x, t) I c&(x, t) for all x and t. 
Proof: Obvious from Eq. (10). 
Intuitively, this result is reasonable. The inequality 4t I 4* means, crudely 

speaking, that [4,, DJ has a smaller storage capacity than [4,, DJ. The first 
realization will therefore tend to dissipate energy almost as soon as it is 
reEeived, while the second will store the energy for a time before dissipating it. 

4.4. Example 

To consolidate the ideas of previous sections, it is appropriate to now look at 
an example in some detail. 

It is not hard to show that the first-order system 

ii=-x+u 
y=x+& (11) 

is dissipative with respect to supply rate w(u, y) = uy. (In other words, it is 
passive.) The availability storage is 4a(x) = (2- J3)/2 x2, and the required supply 
is 4_(x) = (2+ ,/3)/2 x2. (In addition, it turns out that 4: = 4a: that is, every 
virtual storage function is a storage function.) 
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Let &(x) = @?; then 4c is a quadratic storage function iff 2 - J3 5 C 5 
2 + J3. The associated energy dissipation function is 

D,-(x,, u,O, ‘I’)= 
I 

l;Cx”+(l-C)xu+$u2]dt 
0 

= ;C(x-y,u)‘+R+‘]dt, 
I 0 

where ~~=(C-1)/2C,R,=~-Cy~.NoticethatR,rOiff2-J3~C12+J3. 

For values of Coutside this range, it is possible to make the “dissipation” negative. 
For a given C, it is a meaningful exercise to find that u which minimizes 

D&x0, u, 0, T). For small C, the low-dissipation trajectories turn out to be 
those for which (IxI( is decreasing. For large C, on the other hand, the 
low-dissipation trajectories have the property that 1(x(\ increases with time. The 
extreme cases are: (a) C= 2- J3, 4&x) = 4a(x). For this realization it is 
possible to drive the state to the origin with an arbitrarily small amount of 
dissipation. That is, all of the stored energy may be extracted at the terminals. 
However, controls driving the state from the origin to some specified nonzero 
final state produce a relatively large amount of dissipation. (b) C = 2+43, 
4,-(x) = 4r(x). In this case any state is reachable from the origin with an 
arbitrarily small amount of dissipation. Returning the state to the origin 
does, however, involve a non-negligible amount of dissipation. 

These are of course special cases. They do however illustrate the result that 
for small C the dissipation tends to be concentrated in the earlier part of a 
trajectory leaving the origin (and ultimately returning to the origin), and that 
the opposite condition holds for those realizations associated with large C. 

So far, the word “realization” has been used in an abstract sense. To provide 
a physical example, let us suppose that the system in question is an electrical 
one-port network, where u is the port current and y the port voltage. The 
supply rate then turns out to be the actual electrical power input to the 
network. 

A physical realization of the network is shown in Fig. 1. The stored energy is 
$Cx”, so that in this example we have a meaningful correspondence between 

” Rc 

+ ai 
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the abstract “storage function” and physical stored energy. Also, the power 

dissipation in the two resistors is I?,+’ and C(x - 7/cu)‘, so that our earlier 
dissipation function does in fact represent dissipated energy. Note that for each 
value of C, we have a different physical realization with the state equations 
(11). (Setting C = 1, it is easy to check that the network in Fig. 1 reduces to a 
simple reciprocal RC network). 

Because our example is linear, a transfer function interpretation is possible. 
Let 

yl= JR+ 

~2 = Jm - IQ+) 
be the two “dissipation outputs”, i.e. the two resistor currents, normalized to 

remove the effect of the magnitudes of the resistances. Letting Yl(s), Y2(s) and 
U(s) be the Laplace transforms of the corresponding lower-case quantities, we 
have 

JR, 

Jc(l-Yc)-w 

I 

U(s) A T(s)U(s). 

1+s 

As C varies from 2- J3 to 2+ J3, yc varies monotonically from -i(J3+ 1) to 
++(d3- 1). The result is that the phase lag of Y2(s) with respect to U(s) 
increases monotonically with C. Thus we have a connection between dissipa- 
tion delay and phase lag. Notice also that 

T’(-s)T(s) =;+A 

independently of C. This says, in effect, that the net power dissipation rate for 
a periodic motion is the same for all realizations; only the phase delay is 
different for each different C. 

The above example illustrated an excellent tie-up between our abstract 
concept of “realization” and an actual physical realization. 

When a physical realization is chosen, this specifies an energy storage 

mechanism. Storage functions, on the other hand, are defined without refer- 

ence to any storage mechanism. One interesting feature of the example is that 
4: = &. One might ask whether this is true for every dissipative system. The 
answer is that, in general, this is not so (26). 

4.5. Lossless systems 

A special class of cycle-dissipative systems are those for which no input 
energy is dissipated. 

Definition 13 
The system is defined to be cycle-lossless iff 

I 

t, 
w(u, y) dt = 0 

t0 

whenever x(t”) = x(t,) = 0, for all u EU, and all t, 2 t,. 
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Definition 14 

The system is defined to be lossless iff it is both cycle-lossless and dissipative. 
In view of Theorem 2, it is easy to see that for casual systems Definitions 4 

and 14 agree. 
The following results are obvious consequences of the above definitions. 

Theorem 12 

Let 4 be any virtual storage function for a cycle-lossless system. Then 

and 

(12) 

for all t, 2 t,, and all u E U,, where x(t,) = x0 and x(t,) = x,. 
Proof: A minor modification to the proof of Lemma 4 shows that both 4: 

and 4, satisfy (12). From Theorem 11 it follows that 4: = &. Since 4: and c#+ 
are the minimum and maximum virtual storage functions, all virtual storage 
functions must be equal. 

Theorem 13 

Let 4 be any storage function for a lossless system. Then 

as well as (12) being satisfied. 
Proof: Obvious from Theorem 11. 
Notice that the only difference between lossless and cycle-lossless systems is 

that in the lossless case the (unique) storage function must be non-negative. 

V. Applications 

Since the theory of dissipative systems evolved out of developments in 
stability theory and network synthesis, it is appropriate that some attention 
now be given to showing how basic results in those areas depend on the 
abstract energy concept. 

For sake of brevity, we reduce generality somewhat and consider dynamical 
systems with non-linear finite-dimensional state-space representations of the 
form 

i = f(x, IA) 

Y = gb, u). 
(13) 

The values of x, u and y lie in Euclidean spaces R”, R” and Rp. In accordance 
with the axioms of Definition 5 and the later assumptions that U = Ly(R+) and 
Y =Lq(R+), we assume appropriate smoothness and that f(O,O) = 0 and 
g(O,O) = 0. 
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Although the results to be presented apply to more general systems than 

(13), this setting allows a unified presentation of both applications. In keeping 
with the need for brevity, proofs, which are inessential to illustrating dissipative 
systems theory, will be omitted and references given instead. 

5.1. Preliminaries 

We proceed to collect together and sharpen some previous results to a form 
which facilitates the study of the specific problems of stability and synthesis. In 
particular, consideration needs to be given to questions of smoothness and 

positive definiteness of the storage functions. 
In Section IV, the storage functions did not emerge with any special 

smoothness properties. In fact, unless forms of controllability were assumed, 
they could be unbounded for some finite x. Even if boundedness for all x E X is 
ensured, there is no guarantee that +(.) will be smooth even if functions f(., .) 

and g(., 0) are smooth. One conceptually reasonable idea for at least ensuring 
continuity of the storage functions is to impose a form of local controllability; 
this carrying the connotation of being able to reach states which are “close 
together” by controls which are “close together” (15). 

Definition 15 

A .dynamical system is said to be locally controllable at x0 if, for any x1 in a 

suitably small open neighbourhood fi of x0, there exists choices of u EU, and 
t, such that the state can be driven from x(t,)=x, to x(t,)= x1 and from 
x(t,) = x, to x(tJ = x0 with the additional property that 

II, I 
kt) dt 5 p (Ilxl - ~11) (14) 

for some continuous function p :R+ *R+ such that p(O)=O. The dynamical 
system is said to be locally controllable if it is locally controllable at every state 
QEX. 

Lemma 6 

Let a dynamical system be locally controllable. Then any virtual storage 
function which exists for all x E X is also continuous. 

Proof: Consider some arbitrary state x0 in X and let the virtual storage 
function be +(.). Then for any x1, in the neighbourhood 0 of x0, we have from 
(8) that 

$(x0)+ j”w(t) dtr4(x,) 
10 

for the tl and u EU, which are specified in Definition 
and considering transitions in each direction between 
deduce 

Mx1) - 4(x0)1 5 P(ll% - xclll). 

(15) 

15. Using (14) and (15) 
x0 and x1, it is easy to 

The arbitrariness of x, and continuity of p(e) give that 4(.) is continuous at x,,. 
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For convenience in the sequel, a system which is controllable, reachable and 
locally controllable will be referred to as being strongly controllable. (For linear 
systems, strong controllability is equivalent to complete controllability.) From 
Lemma 6, it follows that strong controllability implies continuity of any virtual 
storage function 4(e). Under these conditions the time derivative of 4(e) along 
trajectories of (13) can be defined as follows (5,6) 

ma = h%+ ; b#Gx(t + h)l- dJ[x(t)ll. 

We can now state a fundamental result, as a direct consequence of Theorems 
3, 4 and Lemma 6. 

Theorem 14 

Suppose that the system (13) is strongly controllable. Then the system is 
cycle-dissipative (dissipative) iff there exists a continuous function 4 :X -+ IR 
satisfying 4(O) = 0 [4(O) = 0, 4(x) r0 for all x] and 

@[x(t)]5 w[u(t), g(x(t), u(t))] for almost all t ED2 (16) 

along the system trajectories. 
Proof: Follows as a direct consequence of Theorems 3, 4 and Lemma 6 and 

integration theory. [The details are similar to a derivation in (12).] 
This theorem is central to the application of the theory of dissipative 

systems. A specific connection is made between input-output and internal 
properties via the intuitive notion of the existence of a stored energy function. 
Further, the properties of this energy function are such that standard general 
analysis techniques- stability theory, for instance-can be immediately ap- 
plied. 

The use of Theorem 14 to develop stability results will evidently require the 
function +(*) to play the role of a Lyapunov function. Thus, we need to specify 
conditions which will ensure that +(a) is positive definite. As may be expected, 
this makes some notion of observability an issue. 

Definition 16 
The system (13) is said to be zero-state detectable if, for any trajectory such 

that u(t)=O, y(t)=0 implies that x(t)=O. 
Zero-state detectability is a very weak form of observability, since it only 

requires that it be possible to tell if the system is in the zero state or not by 
observing the output. For linear systems this property is equivalent to complete 
observability. In addition to observability, it is convenient to pose the following 
property for a dissipative system. 

Property A. There exists a well-defined feedback law u*(a) such that 
w(u*(y), y)<O for all y#O, and %*(O)=O. 

This property merely says that the input-output conditions can always be 
adjusted to ensure (abstract) energy flow out of the system. 

The following lemma can be adapted from a result in (16). 
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Lemma 7 

If the system (13) is zero-state detectable and dissipative with respect to a 
supply rate having property A, then all storage functions are such that 4(x) > 0 

for all x#O. 

5.2. The relation between input-output and Lyapunov stability properties 

The word “stability” is generally used in reference to two related, but 
nonetheless distinct, concepts. When used in connection with input-output 
representations (Section II), one talks of the boundedness of input-output 
mappings. Stability in a state-space context (Section III) more commonly refers 
to the zero-input response to a non-zero initial state. Although observations 
have been made about the similarity of results obtained by each method, the 
two approaches have largely developed independently. For dissipative systems, 
however, one can exhibit an especially intimate relationship between input- 
output stability and state-space stability; this is illustrated below. 

A detailed discussion of stability definitions is beyond the scope of this 
paper; only a brief outline will be given. A system is called input-output stable 
if y EY for all u EU, i.e. K(H) = U. However, the stronger property of finite 
gain mentioned in Section II is more commonly required in stability tests: there 

exists a scalar k <w such that llyllT 5 k(luJ(, f or all u E U, (4). The state-space 
stability concepts are those featured in standard Lyapunov stability theory of 
differential equations (5,6). More specifically, we will be concerned here with 
the property of asymptotic stability of an equilibrium state. 

Recall the well-known result for linear systems: for minimal state-space 
representations, asymptotic and input-output stability are equivalent (27). The 
following result can be seen as a partial generalization of this to non-linear 

systems. 

Theorem 1.5 
The dynamical system (13) is finite gain input-output stable iff it is dissipa- 

tive such that Q < 0. Under this condition and assuming strong controllability 
and zero-state detectability, the null solution of the system (13) is asymptoti- 
cally stable. 

Proof: The proof that Q <O is equivalent to input-output stability can be 
found in Ref. (18). [Of course, this does not require existence of any internal 
representation, let alone one of the form (13).] 

The derivation of asymptotic stability depends crucially on Theorem 14. 
Note that, since Q ~0, Property A holds [trivially by taking u*(y) =O]. Now, 
invoking Theorem 14 and Lemma 7 gives the existence of a continuous 
function 4(.) satisfying 4(O) = 0, 4(x) >O for all xf 0 and 

6 (x) 5 g’(x> 0) Qdx, 0) 

along the zero-input trajectories of system (13). Since Q < 0, 6 5 0 with 6 = 0 
only on the set R = {x : g(x, 0) = 0). Asymptotic stability is deduced from La 
Salle’s Invariance Principle (6) using +(.) as a Lyapunov function: all trajec- 
tories in a neighbourhood of the origin approach the largest invariant set in IR 
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as t -+ ~0. But zero-state detectability implies that this invariant set consists only 
of the origin. 

Roughly speaking, Theorem 15 tells us that any conditions leading to 
input-output stability plus some internal regularity constraints also imply 
asymptotic stability. However-in contrast to the situation for linear time- 
invariant systems-asymptotic stability does not in general imply finite-gain 
stability. Further discussion along these lines is beyond the scope of the present 
paper. A closely related result was derived by Willems (13), using a Lyapunov 
function not motivated by internal stored energy and without using invariance 
principles. The result can be seen to relate clearly the stability theory results 
which have evolved separately within the functional analysis approach or by 
using Lyapunov theory. This is particularly significant in the case where the 
dynamical system is actually an aggregate of a large number of interconnected 
subsystems. Here, a storage function 4(e) can be interpreted as the summation 
of subsystem stored energies, and the matrix Q reflects parameters associated 
with subsystem dissipativeness properties and the interconnection constraints. 
This viewpoint leads to considerable unification of previous work as well as 
new results on the stability of large-scale systems (18). 

So far, virtual-dissipativeness has not been used. However, this concept is 
basic to consideration of when a dynamical system is unstable. In particular, 
one cay say a lot about systems which are virtual-dissipative, but not dissipa- 
tive. Results with an appealing parallelism to those for stability (from both the 

input-output and Lyapunov approach) have been derived (14,19). 

5.3. Synthesis of passive systems 

A number of standard linear network synthesis techniques [see for example 
(lo)] involve the decomposition of a passive network into a lossless part and a 
memoryless part, both of which are passive. A typical decomposition is shown 
in Fig. 2, where u, y, and ui are port currents and y, u2. and yr are the 
corresponding port voltages. Anderson and Moylan (28) have shown that a 
similar decomposition may be applied to a class of nonlinear networks. It will 
now be shown, with the aid of Theorem 14, that the result of (28) continues to 
hold for passive systems whose state equations have the general form (13). 

Assume that the system (13) is passive, that one of its storage functions 4(a) 
is differentiable, and that the map x + V4(x) has an inverse. That is, there 
exists a function h(m) such that h[V4(x>]= x f or all x and V4[h( u)] = u for all 
u. Under these conditions, we claim that the original system (13) may be 
synthesised as a suitable interconnection of the two subsystems 

and 

Y = dh(uA ~1 

~2 = -f[h(uA ~1 
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c$+yiii~~~ 
FIG. 2 Decomposition of passive network. 

The interconnection is described by 

u1= -Y2 

u2= Yl. 

(19) 

For electrical networks, the constraints (19) represent the cascade interconnec- 
tion shown in Fig. 2. For a system which is not necessarily an electrical 
network, Eqs. (19) still specify an interconnection which is “reasonable” in that 
it is both memoryless and lossless (in the sense that u,y, + u,y,= 0). In 
Willems’ terminology (7), (19) specifies a neutral interconnection. 

It is a straightforward exercise to show that (17)-(19) are together equivalent 
to Eqs. (13). Further, subsystem (17) is clearly lossless and (18) is memoryless. 
To see that subsystem (18) is passive, notice that the result of Theorem 14 may 
be written as 

V’4(x)fb, u) 5 u’gb, u) (20) 

for any x. In particular, with x = h(uJ, (18) and (20) together imply that 

u’y+ u;y,>o. 

That is, Eqs. (18) described a passive memoryless system. 

VI. Special Classes of Systems 

Up to the present point in the paper, the discussion has made little reference 
to the structure of the dynamical system (aside from minor constraints on the 
spaces U,, Y,, and X, the importance of causality and the inessential restriction 
to finite-dimensional systems for the applications). This demonstrates that the 
basic ideas are independent of such structural considerations as dimensionality, 
time-invariance and linearity. However, testing whether a given system is 
dissipative in applications will obviously depend on a knowledge of system 
structure. Thus, we are led to a consideration of the computational-as distinct 
from the previous conceptual-aspects of dissipative systems. 

Historically the conceptual side has been immersed in the structure required 
for computational feasibility. The first result to consider is the very important 
Kalman-Yacubovich Lemma (8,9), which characterized a rational positive real 
transfer function (and so a single-input-single-output passive finite-dimensional 
linear system) in terms of the solution of a set of algebraic equations involving 
the matrices of a state-space realization. It is easy to interpret this solution in 
the stored energy function context. Subsequently many generalizations were 
made to more general classes of systems; the highlights being Anderson’s 
extension to multivariable systems (10,29) and Moylan’s extension of the latter 
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result to a broad class of non-linear systems (15). In each case, the applications 
were restricted to systems for which the result was derived; but, in hindsight 
and via the theory of dissipative systems, we see that conceptually these 
applications can be studied at a very general level via results such as Theorem 

14. 
In this section, a brief survey is given of results on characterizing dissipative- 

ness for finite-dimensional systems. The exposition is by no means comprehen- 
sive; it being intended to illustrate the spirit of such results. For instance, 
results can be given for linear infinite-dimensional systems (11,22). 

6.1. Linear finite-dimensional systems 

Suppose that the dynamical system has a state-space representation of the 
form 

i(t) = F(t)x(t)+ G(t)u(t) 

y(t) = H’(t)x(t)+ J(t)u(t) 
(21) 

and assume that (F, G) is completely controllable. The result to be presented is 
adapted from Ref. (30). Smoothness restrictions are needed on functions F(e), 
G( * ), H( . ), and J( * ), but a precise discussion of this issue will not be presented; 
see Ref. (30) for details. 

Theorem 16 

A necessary and sufficient condition for the system (21) to be cyclo- 
dissipative (dissipative) with respect to supply rate (5) is that there exists 
matrices P(s), L(o) and W(.) with P(.) symmetric (non-negative definite sym- 
metric) satisfying 

P(t)+P(t)F(t)+F’(t)P(t)= H(t)QH’(t)-L(t)L’(t) 

P(t)G(t)= H(t)(QJ(t)+S)-L(t)W(t) 
R+S’J(t)+J’(t)S+J’(t)QJ(t)= W’(t)W(t). 

(22) 

The quadratic virtual storage functions, as defined in Definition 11, are given 
by 4(x, t) = x’P(t)x. For time-invariant systems, the storage functions do not 
depend explicitly on time. Of course, it could happen that the system (21) is 
time-varying, but the energy storage mechanism does not reflect this. (In such a 
case, we expect the energy dissipation to have a time-varying character.) 
Anyway, for time-invariant systems, the transfer function matrix is a conven- 
ient alternative description to (21). Dissipativeness can be expressed in terms 
of a frequency domain inequality constraint on this matrix (7,20); this being a 
generalization of the well-known association of positive real (generalized 
positive real) matrices with passive (cycle-passive) systems (10). 

For time-varying systems, the role of the transfer function matrix is taken by 
the impulse response matrix 

Z(t, 7) = J(t)s(t - T)+ H’(t)@(t, T)G(T)l(f - T). (23) 

In Eq. (23), 6(.) and l(.) are respectively, the unit impulse and the unit step 
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function, and @( ., *) is the transition matrix of F(e). Dissipativeness can be 

interpreted as an integral inequality constraining Z( . , . ). Thus dissipativeness 
(and cycle-dissipativeness) can be fully characterized in both an input-output 
sense and a state-space sense. The solution of (22) can be achieved via the 
well-known Riccati differential equation (30). 

6.2. Nonlinear finite-dimensional systems 

As mentioned previously, Moylan (15) gave a characterization of passivity 
for a broad class of nonlinear systems. The systems referred to have a 

state-space representation of the form 

x = f(x) + G(x)u, 

y = h(x)+_r(x)u. 
(24) 

A generalization of the result to arbitrary dissipativeness properties has been 
studied in (16,20); and this will now be discussed. We note that the system 
(24) is time-invariant and linear in the control. It has been suggested that this 
latter constraint can be applied without substantial loss of generality with 
respect to the form (13) (31). Also, by physical reasoning, it can be argued that 
time-invariance is not overly restrictive; that is, most physical circuits and 
systems, if adequately modelled, are time-invariant. Thus, we conclude that 
Eqs. (24) represents a very large class of non-linear systems. Once again, we 
will not discuss at length a priori smoothness assumptions; it suffices to say that 

(strong) controllability of the system and differentiability of a storage function 
are needed. The following result can be derived using Theorem 14 (16,20). 

Theorem 17 

A necessary and sufficient condition for the system (24) to be cyclo- 
dissipative (dissipative) with respect to supply rate (6) is that there exist 
functions 4 :X+[w, 1 :X-+P and W:X-+R4”“, for some integer q, satisfy- 
ing 4(O)= 0 (4(0)=0, 4(x)20 for all x) and 

for all x, where 

and 

V’+(x)f(x) = h’(x)Qh(x)- l’(x)l(x) 

iG’(x)V~$(x) = s’(x)h(x)- W’(x)l(x) 

R(x) = W’(x) W(x) 

S(x) = QJ(x) + s 

(25) 

R(X)=R+J’(x)S+S’J(x)+J’(x)QJ(x). 

The (differentiable) storage functions are provided by the functions +( .). In 
these special cases, we can make (9) more explicit; as an illustration, corres- 
ponding to (25) 

D(x(tJ, u, t,, t,)= 
I 

“(l(x)+ W(x)u)‘(l(x)+ W(x)u) dt. (26) 
f,, 

At the present time, Theorem 17 provides the only general procedure for 
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testing the dissipativeness of non-linear systems. By comparison with the linear 
case, this indicates that further extensions should be made in this theory. For 
instance, incorporating the Volterra representation results for systems of the 
form (24) (2), could lead to useful input-output characterizations of dissipative- 
ness. A further line of consideration is to provide more explicit characteriza- 
tions of the storage functions +(.) for classes of non-linear systems intermediate 

between linear and nonlinear of the form (24). As an illustration, the following 
example suggests that the interesting virtual storage functions for a class of 
bilinear systems (2) are quadratic. 

Example 

Consider the single-input-single-output system in which the input enters 
bilinearly and the output is quadratic 

.t=Ax+Bxu 

y = X’CX. 
(27) 

It is easy to see from Theorem 17 that system (27) is cycle-passive (passive) if 
there exists a matrix P with P symmetric (non-negative definite symmetric) 
satisfying 

PA+A’PsO 

PB+B’P=C. 

The quadratic storage functions are given by 4(x) = x’Px. A tighter study of 
systems like (27), along the lines known for linear systems (lo), requires some 
advances in the theory of non-linear optimal control (32). 

VII Conclusions 

The properties of dissipativeness and cycle-dissipativeness (or virtual- 
dissipativeness) have been presented as input-output properties of a general 
dynamical system. We have seen in Theorems 3 and 4 (and their differential 
version Theorem 14) that, given a state-space representation, one can deduce 
the existence of a convex set of functions which have the appealing interpreta- 
tion of stored energy. These results are seen to generalize the essential part of 
the well-known Kalman-Yakubovich (or Positive Real) Lemma (8,9,29,15) to 
general dynamical systems. It is argued that this relation between input-output 
and state-space representations constitutes a fundamental basis for the study of 
many non-linear systems theory problems. 

The applicability of the theory of dissipative systems should be considered at 
two levels: firstly, at the level of general dynamical systems it is a useful tool 
for the derivation of results on qualitative behaviour such as stability; secondly, 
with specialization to a particular class of systems, results which enable 
computation of the storage functions can be used for quantitative analysis (or 
synthesis). In the first category, results such as Theorem 14 play a central role; 
whereas Theorems 16 and 17 illustrate tools for the second category. In 

354 
Journal of The Franklin Institute 

Pergamon Press Ltd. 



Dissipative Dynamical Systems 

discussing applications, attention has been given to stability theory and non- 
linear system synthesis. However, applications have also been reported in 
optimal control and filtering theory [see (7,lO) for a summary of applications 

to linear systems and (15) for some generalizations to non-linear systems]. This 
list of problems would not seem to exhaust the potential applicability of the 
theory. In particular, one of the authors is currently considering the use of 
dissipativeness ideas in automata theory. 

Further extensions of the results of this paper could be made by considering 
new refinements of dissipativeness properties. For example, the input-output 
stability literature makes use of so-called incremental passivity properties (14); 
or, in other words, some notion of local passivity. The implications of this 
property on a state-space representation are of interest in the study of 
non-linear systems. In recent work in the field of non-linear circuits, Chua and 

Green (33) and Matsumoto (34) reveal clearly the importance of a property 
called eventual passivity; this property is intermediate between passivity and 
ultimate passivity and is useful for deriving boundedness results. We should 
also note here that the work of Willems (7) has recently inspired a careful study 
of the notion of passivity for non-linear circuits (35). The authors of (35) 
conclude that the input-output definition of passivity used in control theory, 
and adopted as a starting point in this paper, leads to results of insufficient 
generality for circuits. Roughly speaking, problems arise because it is not 
always reasonable to attach preferred status to the origin (or any other single 
point) as a basis for the definition of passivity; consider commonly used 
circuits which have multiple equilibria (36), or the possibility that a circuit may 
have no finite equilibria. TO cover these situations it is proposed in (35) that 
the condition &(~)<a for all x is a more generally reasonable definition of 
passivity. This work appears to provide some interesting insights into the 
application of dissipative systems theory. 
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