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Abstract

This paper describes simple sufficient con-
ditions for stability and instability of inter-
connections. The central theme is the notion of
"dissipativeness'" of the subsystems - a property
which includes finite gain, passivity, conicity
and some other variants as special cases.

1. Introduction

This paper is concerned with the input-output
stability of interconnected systems. For brevity,
we will not attempt to survey the extensive and
growing literature in this field, but it is
possible to make one important observation:
invariably, input-output stability tests for
interconnected systems start from the postulate
that the behaviour of the subsystems is
imperfectly known. This may well reflect physical
reality; more importantly, though, it reflects a
recognition that, if one used detailed equations
to describe the subsystems, the resulting system
description would be so complex that any stability
tests so derived would be massive and unwieldy.

To avoid an information explosion, the usual
approach is to use only one or two parameters for
each subsystem, specifying bounds on subsystem
responses. The resulting stability criteria give
merely sufficient conditions for stability

(rather than necessary and sufficient conditions),
but this is the inevitable result of trying to
make the tests simple.

For example, many of the known tests are
"small gain" criteria. Each subsystem is
described by only one parameter, which is a
bound on its input-output gain. Some other tests
are based on assuming passivity, or conicity,
of the subsystems. Again, these assumptions
correspond to the extraction of one or two
parameters to describe each subsystem.

This suggests an underlying theme to all the
known input-output approaches. Our contention
is that a unifying factor is the property of
"dissipativeness'. This property, to be defined
below, includes finite gain, conicity and
passivity as special cases. Consequently, one
can state a general stability criterion [1] which
includes many of the past published criteria as
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special cases.

The exposition proceeds as follows: after
giving some basic definitions, it will be shown
that there is a simple stability test for
dissipative systems. A related instability theorem
will also be given. It will then be shown that,
for a composite system which is a linear inter-
connection of subsystems, dissipativeness of the
subsystems implies dissipativeness of the overall
system. This allows stability and instability
criteria to be given for interconnected systems.
The stability result is closely related to that
in [1]; the treatment of instability is new.

There are also points of contact between the
present work and that of Willems - see for example
[2, 3]. Willems, who originated the
dissipativeness concept, was very largely concerned
with the relationship between dissipativeness
and Lyapunov stability. The present approach,
which follows more in the spirit of [1,4], is
concerned mainly with input-output stability.

2, Definitions

Let 5, S and T be three given spaces,
where S c S_ “is a real inner product space
(although inegeneral S is not an inner product
space). Also let P, be a family of projectionms,
such that for every (T e T, P.,, maps S_ 1into S.
That is, for all u e S and"all T e T, we have
PueS. &

T

Informally, 7T is the "time line", and P
can be thought of as an operator which truncates
a signal at time T. (However, we do not wish to
formally restrict T to being the real line,
since this would preclude application of the theory
to areas like multi-dimensional filters). S is
our signal space, and S 1is the space of
"bounded signals". Obviously, a study of
instability requires us to allow the possibility of
unbounded signals - that is, signals which lie in
Se but not in §.

For any integer n, let 5" denote the
space of n-~tuples over S (and similarly for
51). For u = (u1, uz, ..., u) ¢ S™  and
V= (Vi, V2, seey vn) e S0, d8fine
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n
<u, v> = Z <u i

i=1 1

and

PTu = (PTul, P

Also let <u, v>
assumed that

TU2s s PTun)

denote <P_u, P _v>, It is
P_.~ has the properties

<PTu, v> = <y, ;Tv> = <PTu, PT :

and ][u||T < ||u]l for all wu e 5" and all

T e T where ||u|]. and ||u|| denote the sjuare

roots of <u, u>T ;nd <u, u> respectively.

A system G, with m inputs and p outputs,
may be described as a subset of Sg X Sg; that is,
as a collection of possible input-output pairs
(u, y) where u e ST and y e SB.

In discussing stability, it is useful to refer
to the set

y e sP  and (u, y) € G}

5",

Definition: G is causal iff P _y; = PTyz,
for all (u1, y1) € G, (uz, y2)'¢ G

such that PTul = PTuz, and all T e T.

@) = {ue S

Definition: G is stable iff X(G)

For the next two definitions, let
Q: 5B - Sg, S : Sz > Sg and R : Sz > Sz be

memoryless bounded linear operators, with Q
and R self-adjoint. (And with the term
"memoryless" defined in terms of causality in
the usual way).

Definition: G is (Q, S, R) - dissipative
iff

T + <u, Ru>T 20 1)

for all T e T and all (u, y) € G.

<Y, Qy>p 4+ 2<y, Su>

Definition: G is (Q, S, R) -
cyclodissipative iff

<y, Qy> + 2<y, Su> + <u, Ru> 2 0 (2)
for all (u, y) € G such that u ¢ XK(G).

With various choices of Q, S and R, it
should be clear that dissipativeness embraces
concepts such as passivity and conicity [5]. In
particular let Q = -k%I (where k 1is a scalar
and I denotes the identity operator), S =0
and R = I. Then the definition of dissipativeness
reduces to ][y]l < k|!u||T. In this case we say
that G has fini%e gain, with an upper gain
bound of k.

In the following two sections, we shall
require that there exists € 2 0 such that
<y, Qy> < -¢||y||? for all y e SP. If € =0,
then the operator Q 1is nonpositive definite.
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v> for all u, v e SZ,

If € 1is strictly positive, then Q 1is negative
definite and has a bounded inverse. For brevity,
we shall use the term '"strictly negative definite"
to describe an operator Q which satisfies the
above inequality for some & > O.

Notice, incidentally, that if Q 1is negative
definite then definitions (1) and (2) require
the system to be unbiased (in the sense that zero
input implies zero output). One way of allowing
for output bias is to replace the zero on the right
side of (1) and (2) by an arbitrary constant,
and to define finite gain via the inequality
||yllT < k,|lu|l + k;. To keep the notation simple,
we shall ignore ;his possibility in the following
sections.

3. Stability and Instability

The exact relationship between stability and
finite gain is not entirely trivial; but to avoid
digressions we shall not explore this question. It
suffices here to state that finite gain is generally
considered to be a strong form of stability. The
"stability" results of this paper are actually
"finite gain" results. Note, incidentally, that
Theorem 1 is closely related to results in [1}, [6].

Theorem 1: If a system G is (Q, S, R) -
dissipative for some strictly negative
definite Q, then it has finite gain.

Proof: 1If Q 1is strictly negative definite,
then it is a relatively simple matter to manigulate
the inequality (1) into the form <y, y>_ < k“<u, u>
for a scalar k depending on the norms of Q, S, R.

Theorem 2: If G 1is causal and (Q, S, R) -
cyclodissipative for some nonpositive

definite Q, but is not (Q, S, R) -
dissipative, then it is not stable.

Proof: Suppose that G is causal,
cyclodissipative, and stable. Then for any
ueS® and any T ¢ T, stability implies that
P_u = K(G). Let y. be an output corresponding
to P,u; that is, we have (u, y) € G and
(PTu, V) € G. Then (2) becomes

<y, Qy> + 2<y, SPTu> + <PTu, RPTu> 20

Now causality implies PTy = PTy, so we have

+ <u, Ru>_ 20

<y, Qy> + 2<y, Su> T

T
With O nonpositive definite, this inequality
implies inecuality (1). That is, our original
assumptions implv that G is dissipative. Conver-
sely, if G 1s not dissinative, then it cannot be
stable.

Notice that the above two results are not
completely complementary, in that the stability
result refers to finite-gain stability, but the
instability result does not. Also, causality
appears to be essential in Theorem 2, but is not
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needed in Theorem 1. The issues raised by these
discrepancies have not yet been fully resolved.

4. Interconnected Systems
Suppose now we have N subsystems, such that
for all i the ith subsystem G is dissipative
or cyclodissipative with respect to some
@ S;5 R).
vii
N

. ZH.-Y s 1
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where u, and vy,
G,, the u aré external inputs, and the

are memoryless bounded linear operators. In and
obvious notation, the above constraints may be
written more compactly as

are the input and output of
H,,

= ue - Ry

The input and output of the overall system are

taken to be u, and vy.
Let Q = diag{le Q2: vevy Q }
S = diag{S;, S2, ..., S ,} and R = dlag{Rl, Rz,

. RN}. Define the operator

* * %
§=Q+HRE-SH-HS

(where the

(3)

* denotes adjoint).

Theorem 3: Tf al]l subsystems are
dissipative and Q 1is negative definite,
then the overall system has finite gain.

Proof: We have N inequalities of the form
By adding these, it may be shown that the
overall system is (Q, S, R) - dissipgtive, where

Q 1is given by (3) and the forms of S and R
are of no interest. (The details of this
derivation are identical to those for the
closely related result in [1]). The result then
follows from Theorem 1.

(1).

Theorem 4: If all subsystems are
cyclodissipative and unbiased in the sense
that (0, y.) € G, implies vy = 0, if

Q 1is nonpositive definite, it the overall
system is causal, and if at least one
subsystem is not dissipative, then the
overall system is not stable.

Proof: As in Theorem
the overall system is (Q,

3, it may be shown that

where § =5 - H*R, R = R, and Q 1is given by
equation (3). Now suppose that, for some k,
subsystem Gk is (Qk’ S Rk) - cyclodissipative
but not R, ) - d1551pat1ve. Then there
exists a §') and some T € T such
that

é;k’ Qk;£> + 2<§£, T + <u Rku > <0

Let the subsystems be interconnected

S, R) - cyclodissipative,
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Now the above definitions of Q, S

~

and R are

such that
< >
¥s Qy>p + 2<y, S u> +<u, Ruy>
T T
N
=] (<y4> Qyy> + 2<y;, Syu o P >)
i
i=1 T
T
(Recall that u, and y, are the input and output
of subsystem .). Chobdse an external input u
such that : €
Uy T Hikyk for 1 = k
Yok T Ut Hgy

With this external input there corresponds a

solution u of (I +HG) u=1u such that
u, =0 for i#2k, and u = The

corresponding subsystem outputs are y, =0
for i 2k, and vy The above sum is

therefore negative %or a% least one (u , Y)
pair, which suffices to show that the o%erall
system is not (Q, S R) - dissipative.
Instability follows from Theorem 2.

5. Discussion

In most applications, the various linear
operators introduced here are matrices; so the
stability tests are simply a matter of checking
a matrix Q for negative definiteness. Checking
the subsystems for dissipativeness or
cyclodissipativeness may still be difficult, except
for linear single-input single-output systems
where the circle criterion [5] may be used.
Criteria for dissipativeness are also known [4] for
some classes of nonlinear systems.

It turns out [1] that Theorem 3 (or, more
precisely, the special case of Theorem 3 which
appears in [1]) includes as special cases many of
the previously published stability criteria. It
appears likely that Theorem 3, or something close
to it, represents the limit in simplicity and
generality of what one can get using the present
approach. (Although, obviously, more precise
stability criteria can almost certainly be
obtained if one is prepared to sacrifice
simplicity). The situation with respect to
instability is less satisfactory, and we believe
that Theorem 4 can probably be improved upon. For
example, the interrelationships between causality
and stability are still not fully understood. This
and similar issues remain the subject of current
research.
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