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SUMMARY A method is described for generating Lyapunov functions for multi machine power systems . It is 
based on recent work on stability tests for interconnected dissipative control systems . 

1 INTRODUCTION 

An important aspect of the design of an electrical 
power system is its stability properties. It is 
desirable that the system be able to retain 
synchronism after disturbances that are likely to 
occur . Such behaviour becomes more complex with 
systems consisting bf a large number of machines . 
Powerful analytical tools are required to aid in 
the understanding of such phenomena; and also in 
the development of design techniques . One such 
technique which has met with success is Lyapunov's 
direct method (Hahn, 1967) . The present paper 
describes a simple approach for generating 
Lyapunov functions for multimachine power systems . 
It is based on recent work by the authors (Moylan 
and Hill, 1976 ) on stability tests for interconn­
ected dissipa tive control systems . 

The use of energy functions has long been recognizec. 
as a useful aid in the stability analysis of power 
systems . The well-known equal-area criterion for 
a single machine is an earl y example of this 
(Kimbark, 1956). Since Lyapunov functions are a 
generalization of the idea of energy, it is not 
surprising that much attention has been given to 
finding such functions. Initiated by Aylett (1958), 
the Lyapunov technique soon became the dominant 
mathematical tool for handling the multimachine 
problem. Interesting surveys of all this work 
are provided by Willems (1971) and Ribbens-Pavella 
(1971). Possibly the most sophisticated approach 
is based on formulating the problem as one of 
stabilizing a single loop nonlinear feedback system. 
Then a generalization of the Popov criterion due 
to Moore and Anderson (1968) suggests a suitable 
Lyapunov function (Willems, 1971). With regard 
to the multimachine stability problem, the 
approaches used so far have not had much success 
in incorporating machine models of higher than 
second order . This would appear to leave much 
room for improvement. The chief difficulty seems 
to arise from treating the power system as a 
single system of high dimension. Also techniques 
of insufficient flexibility for generating 
Lyapunov functions have often been employed . 

In contrast to the previous work, this paper treats 
a power system as it naturally occurs: an inter­
connection of a nuuber of subsystems - namely the 
machines. Each machine is shown to possess a 
property called dissipativeness. As defined in 
(Hill and Moylan, 1975),. this is an input- output 
property which generalizes the well-known concept 
of passivity. The key idea from (Hill and Moylan, 
1975) is that one can associate a function with a 
dissipative system; this having properties like 
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stored energy. (These abstract energy functions 
turn out to be a considerable generalization of 
the physical energy functions used in early work 
on power systems). When a number of dissipative 
systems are interconnected, the sum of the indiv­
idual stored energy functions is a possible 
Lyapunov function establishing stability of the 
overall system. It is shown in (Moylan and Hill, 
1976) that this method leads to stability tests 
which are frequently less conservative than those 
hitherto available. 

The structure of the paper is as follows . Section 
2 contains a brief r eview of the theory of diss­
ipative systems. Some of the results in (Moylan 
and Hill, 1976) need to be extended slightly for 
the present purposes; this is done in Section 3. 
The usual power system model is formulated as an 
interconnection of subsystems - each subsystem 
represent ing a machine-in Section 4. Sections 5 
and 6 look at the stability of the power system 
with respect to small and large disturbances -
that is, steady-state and transient stability . 
The results of Section 3 suggest the Lyapunov 
function that is used . Checking steady-state 
stability simply requires testing an NxN matrix 
for positive semidefiniteness, where N is the 
number of machines . Checking transient stability 
is more tedious, but still computationally 
f easible . The Lyapunov function is essentially 
the same as those derived by Willems (1971) and 
Mansour (1972). Consequently, the results 
obtained represent a reinterpretation of known 
ideas in terms of a general approach. However, 
in Section 7, it is proposed that a virtue of the 
present approach is to facilitate the incorporation 
of more sophisticated machine models . Such effects 
as amortisseur damping, governor action and 
voltage regulator action may be accounted for by 
considering different forms of dissipativeness . 
From this point of view, the paper is certainly 
incomplete; it only represents a first step by 
the authors in work on developing new stability 
criteria for more accurate power system models . 

2 DISSIPATIVE SYSTEMS 

Consider a dynamical system whose input is an 
m-vector u and whose output is a p- vector y . 
The precise internal description of the system is 
of only marginal relevance to the present dis­
cussion, but for the sake of concreteness it will 
be assumed that the system has state equations 



f(x,u) y = h(x,u) (1) 

where x is the state vector. In addition. 
suppose that (1) satisfies some regularity condit­
ions roughly summarized as controllability, weak 
observability, and smoothness. Associated with 
(1), we define a scalar function w(o,o) of the 
input and output called a supply rate. This 
function represents an abstract power input. For 
the purposes of this paper it is not essential to 
be more specific on the mathematical constraints 
imposed on (1); (Hill and Moylan, 1975) can be 
consulted for the details. 

The system (1) is said to be dissipative with 
respec t to supply ra te .~ (0 ,0) if the inequali ty 

Jtl w[u(t),y(t)]dt ~ 0 (2) 
to 

holds whenever x(to) = 0, for all tl ~ to and 
for all u. In an abstract sense, inequality (2) 
expresses the fact that the system (1) can never 
supply more energy than it receives. It is 
important, however, to note that the words "power" 
and "energy" as used here do not necessarily 
refer to physical power and energy. Indeed, we 
shall be looking at systems (synchronous generators) 
which physically act as sources of energy; but 
with an appropriate choice of w(o,o), they can 
be called dissipative in the sense of the above 
definition. 

A key property of dissipative systems is the 
following. 

Lemma 1. If system (1) is dissipative in the 
sense (2). there exists a function ~(x) such 
that ~(O) = O. ~(x) > 0 for all x i O. and 

tl 

~[x(to)] + J w(u.y)dt ~ ~[x(tl)] 
to 

for any tl ~to, any x(t o)' and any u. 

A proof of Lemma 1 may be found in (Hill and Moylan, 
1975). The function ~(o) is called a storage 
function; in an abstract sense it represents 
the stored energy of the system. 

Under appropriate smoothness assumptions (which 
are almost always met in practice). the inequality 
of Lemma 1 can be differentiated to give 

dp[x(t)] 
dt ~ w(u.y) 

This suggests that ~(x) might be used as a 
Lyapunov function (Hahn. 1967). 

3 GENERAL STABILITY CRITERIA 

(3) 

In this section. we give two general stability 
results for large-scale systems. They are slight 
extensions of some results in (Moylan and Hill. 
1976). 

Suppose that a large system is formed by inter­
connecting N subsystems, each of which is diss­
ipative with respect to some supply rate and 
proper in the sense that y is not an explicit 
function of u; specifically, let the i th sub­
system, with input u. and output Yi' be diss­
ipative with respect Eo 
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where Q. S , Rand T are constant matrices, 
Qi and ~i Eein~ symme!ric. (By redefining the 
output equation of each subsystem to include Yi • 
this supply rate becomes of the form described In 
Section 2 because each subsystem is proper). Define 
the block diagonal matrices Q = diag (Ql.QZ ...• QN). 
S = dia~ (Sl,SZ, •.. ,SN)' R = diag (Rl.Rz ••••• ~T~ 
and T - diag (T1,Tz •..•• TN). Also let the suE 
system inputs. states and outputs be collected 
into column vectors u = col (Ul.UZ •.•• ,~). 
x = col (Xl.XZ •..•• ~) and y = col (Yl.Yz' ..• 'YN). 

If the overall system is formed as a linear inter­
connection of the subsystems, a very simple stab­
ility criterion can be derived. 

Theorem 1. Let the subsystems be interconnected 
via the constraint u = -Hy. Then the overall 
system is stable in the sense of Lyapunov if the 
matrices 

(5) 

and TH are symmetric and nonnegative definite. 

Proof. Let ~'i (Xi) be the storage function for 
subsystem i {see Lemma 1). Define 

N 
Vex) = I (~i(x.) + ~ y'THy) (6) 

i=l ~ 
Then from inequality (3) and after a little man­
ipulation it turns out that 

This shows that Vex) is a Lyapunov function for 
the overall system. 

For nonlinear interconnections, a similar result 
holds. 

~~ 

Theorem 2. ~t the subsystems be interconnected 
via the conatraint u = -~(y). Then the overall 
system is stable in the sense of Lyapunov if 
~(o) satisfies 

a'Qa - 2a'S~(a) + ~'(a)R~(a) ~ 0 (7) 

" for a~l a. ~(O) = O. and ~(o) is the gradient 
of a)10nnegative function. 

The proof is similar to the linear case. 
N y 

I ~i + J [T~(a)]'da 
i=l 0 

(8) 

using 

Vex) 

as a Lyapunov function. It should be noted that 
the inequality of Theorem 2 is at most quadratic 
in ~ (linear if R=O), and is therefore quite 
easy to check. 

To apply these results. one needs to be able to 
check dissipativeness (i.e. calculate the Qi' 
S , R, and T

i
) of the subsystems. For linear 

stbsy§tems, the easiest method is to draw a 
Nyquist plot for the subsystem, and to check 
whether this plot avoids a certain circle in the 
s-plane (Zames. 1966). For many nonlinear sub­
systems. a method of (Hill and Moylan. 1975) 
can be used; this method incidentally also allows 
calculation of the ~i(x,). The situation when 
T i 0 is often more c5mplicated, but as shown 
l~ter in this paper there are at least some 
situations where the checking is straightforward. 



4 MATHEMATICAL MODEL FOR THE POWER SYSTEM 

We consider the situation of N synchronous 
round rotor machines interconnected by transmiss­
ion lines. The usual assumptions used in post­
fault stability studies are as follows (Ribbens­
Pavella, 1971): 

(1) A synchronous machine is represented by a 
constant voltage E behind its transient reactance. 
In other words, the effects of flux decay and 
voltage regulation are not included. 

(2) Damping power for each machine is proportion­
al to its slip velocity. (This accounts for 
asynchronous damping only to a rough approximation). 

(3) Mechanical power input P to each machine 
during the disturbance is cons~ant; that is, the 
speed governors have relatively large time constants. 

(4) The transfer conductances of the transmission 
line network are negligible. 

Then the motion of the 
th 

i" machine is given by 
N 

L 
j=l 
Hi 

EiEjYijSin(oi-Oj)-Pmi=O 

(9) 

where Mi , ai' Gi and 0i are the inertia 
constant, damping constanE, short-circuit conduct­
ance, and load angle of the machine respectively. 
Yii is the modulus of the transfer admittance 
between the ith and jth machines. 

For stability analysis, it is convenient to have 
a state space model for the system. This has been 
the subject of much discussion in the literature; 
especially regarding the dimension of the state 
space and the nature of the equilibrium points 
(Ribbens-Pavella, 1971). It is convenient to 
assume that at least one of the a is nonzero. 
Then, after an appropriate redefinition of the 
.reference speed, Willems (1974) has shown that 
the equilibrium of interest is given by 

lS i - 0j = c ij 

lS
i 

= 0 (10) 

where the c i . are constants. 
of state varIables is 

The natural choice 

xli 0i - 0io 

X
2 i °i 

where 0i is the equilibrium value of 
the ith ~machine has the state model 

where Fi 

convenience, we define b .. = EiE.Y .. 

(11) 

Then 

For 

The 
by 

1.J J 11 
nonlinear interconnections are then aescribed 
ui = -~i(Yi) where 

sin c . .J 
1.J 

(13) 
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Equations (12), (13) describe a system in the 
form discussed in Section 3. The dimension of 
the state space is 2N. It is now well-known that 
asymptotic stability has to be considered on 
spaces of lower dimension (Willems, 1974); to 
avoid such technical considerations here, we will 
diNive a Lyapunov function for stability only in 
R . Such a function can be simply adjusted for 
asymptotic stability considerations. 

5 STEADY-STATE STABILITY 

We will be concerned with the stability of the 
multimachine power system in a post-fault phase. 
In the power systems literature (Kimbark 1956), 
there are two notions of stability which are 
usually considered: steady-state and transient 
stability. These deal with the ability of the 
synchronous machines to maintain synchronism after 
small and large disturbances respectively. 
Mathematically, these correspond to local stability 
and stability in the sense of Lyapunov (Hahn, 1967). 

In the present section, a study of steady-state 
stability will be undertaken by considering a 
linearized version of the power system model. A 
simple stability test is achieved by using Theorem 
1. 

An investigation of the Nyquist plot for (12) shows 
that 

Re (l+qijw)Gi (jw) <! 0 

where Gi(s) = h~(SI-Fi)-lg and qi <! Mi This 
suggests a supply rate for !he ith a

i machine as 

Now dissipativeness of (12) with respect to supply 
rate (14) is equivalent to the passivity of this 
same system with the output equation altered to 
y. = Xl. + q.xi. Using techniques described in 1. 1. 1. i 
(Hill and Moylan, 1975) it is readily checked that 
an energy storage function for the ith machine is 
~i(xi) = ~ x~Pixi where 

Pi = fa
i 

Mi] 

LMi qiMi 

Now the linearized version 
N 

~i(O) = kiOi - L 
j=l 
Hi 

N 

of (13) is 

b .. cose i .. OJ 
1.J J 

where L biJ·cos c iJ·· j=l 
jf i 

(15) 

Hence, in terms of the notation of Section 3, we 
can define the interconnection matrix H by 

h .. 
1.J 

ifj 

, i=j 

(16) 

From Theorem 1, a stability test follows in terms 
of the positive semi-definiteness of H. The 
Lyapunov function which establishes stability is 
obtained from (6), but will not be given explicitly 
here; it is a special case of that used for 
transient stability in the next section. 



The result of the stability test is an estimate 
of the set of equilibrium load angles about which 
the system operates in a stable manner. This 
defines the so-called steady-state stability limits 
of the machines (Kimbark, 1956). 

6 TRANSIENT STABILITY 

Having established that an equilibrium point is 
stable with respect to small disturbances, we 
consider the extent of the transient stability 
region in the state space. A post-fault initial 
condition in this region ensures that the swing 
curves of the generators do not diverge indefinite­
ly with respect to each other and that a synchron­
ous operating point is achieved (not necessarily 
at the nominal frequency). One useful technique 
is to use a Lyapunov function; an estimate of the 
transient stability region ~eing given by where 
the conditions Vex) ~ 0, Vex) s 0 apply. 

For the system defined by (12), (13), Theorem 2 
suggests a Lyapunov function of the form 

N 
y 

Vex) = ~ I x~P iXi + Io [TIjJ(O)]'dO (17) 
i=l 

where appropriate P , 
l. 

are given by (15) . 

The stability constraint on ~(.) given by (7) is 

for all o. For simplicity, we let 

max 
i 

Mi 
a

i 

(18) 

(19) 

Then (18) ensures nonnegativity of the integral in 
(17) and it is easily checked that ~ (.) is 
the gradient of a real valued function (Apostel, 
1957) . 

The integral lJ~ne 
~' (a)da = 

o 

in 
N 

I 
i=l 

(20) 

where the second line is obtained using (13) from 
a straightforward, but somewhat tedious, calcul­
ation . 

Substituting (15) and (20) into (17) gives 

N 

Vex) = I {~aix~i + Mixlix2i + ~iqx~i 
i=l 

N 
+ q I bi,[cos ciJ, -cOS(Xli-X1J,+ciJ') 

j=i+l J 

- sin Cij,(Xli-Xl j )]} 
(21) 

This function is essentially the same as those 
obtained by Willems (1971) and Mansour (1972). 
However, it should be realized that it was derived 
via a very general technique. A different choice 
of supply rate to (14) for each machine would give 
a different Lyapunov function : For example, it is 
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easy to check that the system (12) is also diss­
ipative in the sense of exterior conicity (Zames, 
1966). With reference to the above derivation, 
some flexibility was lost in the choice of qi 
to satisfy (19). This can be relaxed, but care 
is needed to ensure that the line integral in 
(17) is well-defined. The details of these 
investigations will not be presented here. 

The use of Lyapunov functions to calculate regions 
of stability has been well studied (Willems and 
Willems, 1970). This gives estimates of transient 
stability limits (Kimbark, 1956) for the machines. 
The design of circuitry to clear faults must 
ensure that the power system does not operate 
outside these stability limits. 

7 EXTENSIONS 

The results of Sections 5 and 6 serve to illustrate 
a general technique for deriving Lyapunov functions 
for multimachine power systems. However, like 
previous work, they rely on a rather crude math­
ematical model - note the many effects listed in 
Section 4 that have been ignored. In this 
section, a brief discussion is given of how these 
higher order effects can be included. 

For the purposes of a simple illustration, it is 
convenient to consider the effect of governor 
action. The governor dynamics for each machine 
can be modelled by a single time constant 
between the slip velocity and the mechanical power 
input. This suggests the model 

T dPm, + Pm 
i~ i 

dt 

Introducing the extra state variable 
= Pm - Pg to those given by (11), 
for ~ach ~chine _ is now defined by 

l 
J 

(22) 

X
3i 

the model 

Fi 0 '--1 0 , gi 

-~:J 
and hi 

= l: J 0 -a, 1 
l. M, 

Mi l. 

0 -n, 
l. 

-1 
--T 

- , Ti i 

This is obviously a third order generalization of 
(12). The nonlinear interconnection equation (13) 
remains true. With this model it is easy to 
check that the supply rate (14) can still be used. 
Hence, by ignoring governor action, at worst we 
obtain an overly conservative stability criterion. 
However, a better result can .be obtained by choos­
ing supply rates which match the higher order 
system in a "tighter fashion". The advantages of 
the approach should now be clear: the large­
scale system formulation allows concentration on 
the properties of each machine and the concept of 
dissipativeness offers a flexible way of describ­
ing these properties. 

Further work on the previously mentioned and other 
possible extensions remains to be done. Allowing 
for voltage regulation requires use of Park's 
equations (Kimbark, 1956) to develop a model and 
introduces a further state feedback loop. The 
interconnection equations become more complex 
on allowing rigorously for the effects of 
asynchronous torques and transfer conductances. 



The present discussion is meant only to indicate 
the direction of research on a new approach to 
solving these problems. 

8 CONCLUSIONS 

The results of this paper are believed to offer 
a useful framework within which the stability 
theory of multimachine power systems can be 
considered. The essential features of this 
approach are the use of a large-scale system model 
and the use of the concept of dissipativeness to 
describe the properties of each subsystem. The 
large-scale system approach has two important 
advantages over the aggregate model approach 
adopted in previous work. Firstly, the power 
system arises as an interconnection of dissipat­
ive systems - that is, the machines. By preserv­
ing this structure in the model, important 
aspects of machine behaviour are not obscured. 
Secondly, it is more computationally attractive 
to test the dissipativeness of a number of 
similar low order subsystems than do the corres­
ponding calculation for an aggregate model. 

No significantly new stability criteria have 
been presented in this paper; rather the novelty 
lies in the technique which is used. However, it 
is believed that this technique will lead to 
new results when more sophisticated models are 
used for the machines ~n the power system. 
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