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Abshact-Tbe  existence of a solution to  a linear-quadratic  singular 
control  problem is equivalent  to  the  existence of a solution  to  a  certain 
matrix  inequality. This paper studies an  approach to solving  the  inequality, 
and identifies  the  maximal  solution of the  inequality as defining the 
performance  index  infimum for the control problem. 

1. IKTRODUCTTON 

In a companion  paper [ I ]  we presented a transformation  procedure  for 
solving a general  singular  linear-quadratic  control  problem.  There  the 
approach was to work directly with the cost and  dynamics  and. via a 
series of transformations, to reduce  the  problem  to solving a linear- 
quadratic  problem of lower state  and/or  control  space  dimension.  and, 
in  addition,  either  being  nonsingular or having zero state-space  dimen- 
sion or having zero control  space  dimension. 

Here, we  again de& this  transformation  procedure but  the  method 
differs  from  that in ( I ]  in that we first  find necessary and sufficient 
conditions, involving the existence of a matrix P(.) and the  satisfaction 
of a matrix  inequality by P(.) on the  interval of interest,  for  the 
existence of a solution  to the control  problem.  (These necessary and 
sufficient  conditions involving the P matrix  are  the  appropriate generali- 
zation of the well-known necessary and sufficient  condition for the 
nonsingular  control  problem to have a solution, viz. that  the  associated 
Riccati  equations  have  no  escape times on the  interval of interest.)  In 
this paper. our  approach is to look for a solution  matrix P( .) of the 
matrix  inequality as  the first step  in  solving  the  control  problem. 

We consider the cost 

where q(x(r),u(f).f)=x’(r)Qx(r)+2x’(r)Hu(r)+u’(r)Ru(r), and  the  dy- 
namics 

i ( t ) = F x ( r ) + G u ( r ) .  x ( f o ) = x o .  (2) 

The  state x has  dimension n, the  control u has  dimension m, and all 
matrices  are of consistent  dimensions. The matrices F. G ,  Q. H, and R 
are  assumed  continuous. S is constant  and.  without loss of generality. S. 
Q, and R are  assumed  symmetric.  The  controls u ( . )  are piecewise 
continuous  m-vector  functions  on [tO) 71. 

The linear-quadratic  control  problem is  first. to find necessary and 
sufficient  conditions for v*[lO]=inf,~,V[xo.u(.)]  to  be  finite  for all .yo 

and second, to determine a control u’( .) which achieves V*[xO].  
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To date,  the  search  for necessary and sufficient conditions involving a 
matrix  inequality  has  centered on the nonnegativity  problem.  ix.. 
V [ O , u ( . ) ]  is required  to be nonnegative  for  each u(.). rather  than the 
control  problem.  Theorem 1 below summarizes the known results in this 
regard. First. however.  it  is convenient  to  introduce  some new notation. 
Let P ( t )  be  an n X n matrix,  symmetric  and of bounded  variatlon. 
the  matrix  differential 

d M ( P ) =  d P + ( P F +   F ’ P +  Q ) d t  ( P G +  H ) d r  1 
( P G +   H ) ‘ d r  Rdr 1 

Theorem I [ 2 ] ;  Let F. G ,  H ,  Q, and R be  continuous  on 
Suppose (2)  is controllable on [ r , ~ ]  for  each 7 E(/@ TI: that is. 

1) A necessary condition  for V [ O .  u ( .  )] > 0 for  each u ( .  ) IS  that  there 
exists an n X n matrix P ( r ) ,  symmetric  and of bounded  variatlon on  each 
interval [tlrr2]c(r0, TI. such  that P( T )  G S and  such  that 

I]‘?[x, U’ldM ( P  ) [ ; j > 0 (4) 
I 

for  each [ r I , r2 ]c ( rg :T] .  each u ( . ) .  and  each x ( r I ) .  [ In  (4). x ( [ )  is defined 
from i = F x + G u ,  and knowledge of u ( . )  and .x(/,).] 

2)  A sufficient condition is that  there exists an n X n matrlx P ( o .  
symmetric  and of bounded  variation  on [/,,TI. with P( T )  < S and Ivith 
(4) holding  for all [fl.r2]~[?,,,T]. (The  controllability  assumption ( 3 )  1s 
not  required  for sufficiency.) 

Several points  should  be  noted.  First. this theorem IS pure11 an 
existence  theorem.  It gives no insight into how  any  matrix P satisfying 
the  theorem might be  computed.  Second. it IS  not clear  what  the 
connection  is, if any, to the linear-quadratic  control  problem.  Third. 
there is evidently a gap  between the necessary and sufficisnt  conditions 
and there are examples where the necessary conditlon holds. but not the 
sufficient condition.  (Interestingly. In studying  the case of free i t  
will turn  out  that  the  gap between the necessary and  ~ufficient  condi- 
tions  disappears.) 

A number of proofs of Theorem 1. or closely related theorems. have 
appeared in the  literature [2]-[7]. Basically, these proofs  can be dikided 
into  two classes. In [3]-[5] the singular  problem is considered  as the llmit 
of a sequence of nonsingular  problems while in [2] the proof proceeds by 
establishing  that  the  performance index is of a quadratic  nature irrespec- 
tive of the singularity or nonsingularity of the problem.  The  contribution 
of (61 is to extend  an earlier proof available only for  the  nonslngular 
( R  > O )  and  totally  singular ( R  =0) cases to the partially singular case. I n  
(71, a time-invariant version appears. 

The problem of constructing  the P matrix in (4) is central to the 
problems of covariance  factorization  and time-varylng passive network 
synthesis. It was in the  latter  context  that  an  algorithm  suitable for the 
stationary  case was developed [SI. and  then it was recognized that This 
algorithm with variations was also  applicable  to the time-varying synthe- 
sis  problem [5 ] ,  and with other  variations to the covariance  factorization 
problem [4]. An  algorithm was in fact suggested In [4] for finding a P 
matrix satisfying (4) under  additional differentiability and  constancy of 
rank  assumptions.  In this paper, we show  that the Anderson-!vloylan 
algorithm is  precisely  Kelley‘s transformation [I] executed In a particular 
coordinate  basis  and in showing this.  we derive the generalized 
Legendre-Clebsch conditions in a reasonably  straightfora.ard  manner. 

In connection with the  optimal  control problem. the  Anderson--Moy- 
Ian algorithm,  considered in isolation from the Kelley transformation 
procedure,  can be shown  to yield the  optimal  performance Index. Link- 
ing  it with the Kelley transformation  procedure yields the optimal 
controls as well. 

An outline of the paper  is  as follows. In  Section I I  we adjust the resul: 
of Theorem 1 to  provide necessary and sufficlent conditions  for the 
control,  rather  than  nonnegativity.  problem.  Further. we point out  that 
although  the  matrix  inequality  normally  has an infinite number of 
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solutions,  there is a  maximal  solution  which  defines  the  performance 
index infimum.  In  Section I11 the  problem of solving the matrix  inequal- 
ity  is  tackled.  When the inequality is associated  with a singular  problem. 
it  proves  possible to reduce the dimension of the  inequality. A series of 
such  reductions  leads  either to  an inequality  associated  with a nonsingu- 
lar or trivial  singular  problem, and in either  case, the inequality is easily 
solved.  Section IV contains concluding  remarks. 

11. THE MATRIX INEQUALITY APPLIED TO THE 

COXTROL PROBLEM 

In  the  transformation  approach [ I ]  to  the solution of the  linear- 
quadratic  control  problem, the  reductions in state  and control  dimen- 
sions and the  calculation of the optimal  control  appear in a reasonably 
straightforward  manner, with computation of the optimal cost  complet- 
ing the  solution of the problem.  Here we present an  alternative deriva- 
tion of those  results  employing  the  Anderson-Moylan  algorithm in 
conjunction with a variation of Theorem 1. By this  method  manipula- 
tions are  made  on  the matrix  measure  involving P in (4) in order to 
compute  a solution P which we can  show  to define the performance 
index:  the  calculations of the  state  transformation  and  optimal control 
are not part of the  main  algorithm. 

The follo-ing  theorem gives the  connection  between  the  linear- 
quadratic problem and the type of necessary and sufficient  conditions 
stated in Theorem 1. 

Theorem 2: Assume  continuity of F, G, H ,  Q, and R on [r,,. TI.  Then 
V*[xO] is  finite  for  each x. if and only if there exists an n X n matrix 
P ( I ) ,  symmetric and of bounded variation on [to. TI. such that P ( T )  < S 
and (4) hold  for  each [ r r , r J c [ r o , T ] .  each u ( . ) ,  and each x ( r , ) .  

Proof: Suppose  first that V*[xO] is  finite for  each x,,. Elementary 
algebra 191 shows V*[xo] will be quadratic, if for  all X E R ,  . $ l , [ 2 E R n .  
V*[Xt1]=X2V*[5,]. V*[5,+E21+ ~ * [ S l - ~ 2 1 = 2 ~ * [ E 1 1 + ~ ~ * [ 5 2 1  and V*[5,  
+X[,]-  V*[[l-A[2]=XV*[[l+[2]-AV*[[l-[2]. The first  two  equalities 
follow from  the existence of V* and  the linear-quadratic nature of ( I )  
and (2) ,  see [ 2 ]  and originally [ I O ] .  The third  equality is trivial  for X =  - I .  
0, and + 1, and if proved for X > O ,  follows  immediately  for X < O .  So 
assume X > O ,  h z l .  For arbitrary u l ( . ) , u 2 ( . )  one  can check that 

~ ( 5 , + X S 2 , u , + X u , ) + h V ( 5 , - 5 , . u , - U ~ )  

=XV(sI+52 ,u1+u2)+  V(51-hS2.u,-hu*). 

For arbitrary E >O, choosing ul,u2 so that V(5,  + t 2 . u ,  + u,) < V*(5, +5,) 
+ e  and V ( [ 1 - h 5 2 , u , - h [ J <  V*(5,-A&+e leads to 

V * ( 5 , + X 5 2 ) +  V * ( 5 1 - 5 2 ) & A V * ( t , + 5 2 ) +  V*(&-Ac2)+(1+A)E. 

A similar  argument  leads to  an inequality  going the other way. and since 
e is arbitrary,  one  obtains V * ( ~ l + X [ 2 ) + X V * ( ~ l - ~ 2 ) = h V * ( ~ I + [ 2 ) +  
V*((,  -Xtd. as required. 

It is easily seen that with V*[xO]  finite  for  all x,,. then  V*[.v,,r,]  must 
be  finite  for  all 1 , .  (Here V * [ x , , t , ]  denotes the  infimum of (1) with to 

replaced by t I  and x ( r , ) = x , . )  Therefore, V*[ .v , . t , ]  is quadratic in x , .  
Finally, given this quadratic  bound,  a straightfonvard adaptation of 

the proofs of Propositions 2-4 and 12, theorem 21 gives the  result. 
The proof of the  sufficiency is the  same  as  that  for  Theorem 1-1). 

Remarks 

1) A proof of this  theorem  could also be obtained by the same 
regularization  procedures as can be used to prove  Theorem 1 (see the 
discussion  following the  statement of that theorem). Pnor establishment 
of the quadratic form of V*[xO] when this quantity is guaranteed finite is 
still  required. 

2)  The  gap between the necessary  conditions and the sufficient condi- 
tions of Theorem  1  has been  removed  in  Theorem 2 by assuming the 
existence of the  infimum of V[x , , .u ( . ) ]  for  all x. rather  than  just x O = O  
as in Theorem 1. 

merit that { W 5 1  + 521 - Y E l  - h l )  + { v*151 + t31 - - 531) = V*K1 + (t2 + 5311 - 
'Strictly. [9] demands the bilineanty in 51,t2 of i"[(I+EJ- V*[(,-<2]. The require- 

i"[51-(E2-53)]. however, follows easlly from the equalitla stated. 

3) In  contrast  to  Theorem 1, no controllability  assumption  is  needed 
here. 
4) The linkage  between Theorems 1 and 2 is  really  very  close. For 

example,  it  follows  easily that if V[O,u(.)]>O for  all u ( . ) ,  then  Y*[x,,t,] 
> -a, for all r ,  €( to ,  TI and it  follows  with some difficulty that if 
V*[xO]>  -xx, then there  exists t-,<f,.and definitions of F ( . ) .  G(.), 
H (.), Q( .), R (.) on [ r -  ,,to]  linking  smoothly at to with  the  known 
values of these quantities such that V [ x - , = O , r - , . u ( . ) ]  > O  for  all u ( . ) ,  
and the pair F ( . ) , G ( . )  is completely controllable  on [ r - 1 , 7 ]  for  all 
7 > f -  (A proof of this latter "extendability"  result will be given 
elsewhere [ 1 I].) 

In  general,  there can be  many  matrices P ( . )  satisfying (4) with 
[ f l . t 2 ] ~ [ t , , , T ] .  One  particular one,  however.  is  readily  picked out. 

Lemma I: Suppose that F. G, H ,  Q. and R are  continuous  on [[,,,TI 
and  that with notation  as defined in the proof of Theorem 2, V*[xO] 
exists  for  all x,,. Then  V*[x,,rl]=x',P*(tl)x, for  some  symmetric P*(.) 
of bounded variation on [lo TI with P*( T )  = S and satisfying (4) for 
arbitrary [ r I . f 2 ] ~ [ r 0 , T ] .  and such that for any  other P ( r )  meeting  these 
conditions we have P ( t )  < P*(r) for  each r E[rW TI. 

Proofc There are  three  things to prove.  the quadratic  nature of 
V * [ x , . t l ] .  the satisfaction of (4) by P*(.). and the maximality  property 
of P*( .). The  first two points  are  established in [2]. To prove  the 
maximality. we note that (4) implies by an argument set out in [2 ]  that 
for  any P(.) as above. s ; P ( r , ) x ,  < V[x,.r,,u(.)] for any u ( . ) .  and so 
. v ; P ( t , ) x ,  <inf,gV[.r,.tl.u(.)]= Y*[x,,r,]=x~P*(r,)~v,.  Since x,  is arbi- 
trary.  the  maximality follows. This completes the proof. 

I l l .  SOLVISG THE MATRIX  ISEQUALITY 

As in [l]: we transform the matrices R and G to standard form via a 
series of coordinate basis  changes of the  state  and control  spaces. To  do 
this, we f i r s t  need to assume  various  constancy-of-rank and differentia- 
bility  assumptions to ensure the existence of the  required coordinate 
basis  changes. Then, substitution of the  various  matrices  defined with 
respect to these new bases into (4) will imply  that a certain  part of the H 
matrix is zero  provided  that  the  control  problem  has a solution.  Finally. 
with  redefinition of R ,  G. H .  and u we can then  define an equivalent 
control problem of lower control  space  dimension  but  with R and G in 
the  standard form 

where p is the  rank of R in  the  original  problem. See [I] for  more  detail 
of this procedure. 

Assume  now  that  the  problem is in standard form (j), so that  any 
reduction in the  control  space  dimension  has  already  been  carried out. 
Partition all  vectors and matrices  consistently  with (5) and  substitute  into 
(4). We  then obtain from (4). with w ' = [ x ;  x; u;], 

where dY is d M  with the last m - p  rows and columns  deleted.  With 
some straightfonvard  real  analysis. we can conclude that 

We  have now identified  the  blocks PI, and P,, of P uniquely  for any 
P satisfying (4); any  nonuniqueness can only  occur in the P I ,  block. 
Moreover, P is symmetric on ( to .  T )  implying by (8) the symmetry of H ,  
as  a necessary condition.  Indeed this is a generalized  Legendre-Clebsch 
necessary  condition. 

It is a simple  matter to  show  that  the  equalities (7) and (8) extend to 
the point ro in case P ( r ) =  P*(r), with P*(.) as defined  above.  This  result 
depends  on the maximality of P*(.) and  the fact  that  all jumps in P( .) 
are nonnegative, i.e., P ( t - ) &  P ( r ) <  P ( f + ) .  

A similar  study of the right hand  end-point T leads to the conditions 
S,,+H,(T)>O and N [ S , , + H , ( T ) ] ~ . ~ [ S , , + H , , ( T ) ] ,  where A' de- 
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notes null  space as being  necessary for  the control  problem to have a 
solution. 

Finally,  let us return to (6) and set 

d Y l l  dY12 dY13 

d Y =  [ dYi2 dY22 f y 2 3  1 
dY;,   dY; ,  

where 

~ ~ l l = ~ ~ I l + ~ Q l l + ~ l l ~ , l + ~ ; l ~ l l + ~ 1 2 ~ 2 1 + ~ ; I ~ ; 2 ~ ~ ~  

dY12=dP12+(Q12+PIIFI2+P12F22+FiIP12+F~;1P22)dI 

d Y 2 z = d P , 2 + ( e 2 2 + P u F 2 2 + F ~ P 2 2 + P i 2 F , 2 + F i 2 P , 2 ) d ~  

~ Y I , = ( P ~ , G I I + P I ~ G I ~ + H I ~ ) ~ ~  

d Y u = ( P ~ 2 G , l + P 2 2 G 2 1 + H 2 , ) d r .  

If H I ,  and H z  are  assumed  to  be  differentiable, we can  define  hat 
quantities F. 6, i, Q ,  and d in  obvious  fashion,  similarly to [I], so that 
dY can be  written as 

where P=P,,. 
We  now observe that d,G (P) has  the  same form as dM (P) in (4). We 

therefore seek a minjmization  problem of the  same  form  as (1) and (2)  
corresponding  to d.W(P). However. given the development of [l] i t  is 
clear that the  required  minimization  problem is just that  described in 
Section 111 of that  paper.  In  summary we have  Theorem 3. 

Theorem 3: Suppose  that R and G are in standard form and  that  the 
coefficient  matrices are sufficiently  differentiable and also  satisfy certain 
constancy-of-rank  requirements. Then there exists an n X n matrix P ( I ) :  
symmetric and of bounded variation on [ t o ,  TI, such- that P ( T )  < S and 
(4) holds if and only if there  exists a matrix P( I )  of appropriate 
dimension,  symmetric, and of bounded  variation  on [fm T ]  such that 

1) P(T)< s; 
2)  J:[ i ’ i ’ ]d&(P)  20, for  all zi(.), all [ r I , t 2 ] r [ r m T ]  and all 

3) H 2 * ( ~ )  is symmetric on [ I , , .  TI; 
4) S22 + H22( T )  2 0; 
5 )  ~ ~ ~ , , + ~ 2 2 ~ ~ ~ I c ~ ~ ~ ~ , , + ~ l * ~ ~ ~ I .  . - .  

i ( r1 ) ;  [:I 
Here i is -assumed to satisfy an equ?tion of the form i = Fi + G;, the 
matrix dM(P) depends on P, F, G, H ,  Q. and R, and these latter 
matrices  have  certain  definitions  in  terms of P, F. G, H .  Q, and R .  

Again, as in  [I],  repeated  applications of Theorem 3 and the  reduction 
to standard form  procedure can be made until one of three  possibilities 
obtains.  Either  there arises a zero  dimensional P in which case P would 
be  completely and uniquely  identified by a series of equalities  such as (7) 
and (P), or one  obtains d k ( P )  with k of positive  dimension with R 
nonsingular, or in  transforming  from nonstandard  to  standard form G 
and H become  zero.  For  the  second case-w can  show  that  inequalities 
1) and 2) of Theorem 3 have a solution P if and only if the  associated 
Riccati  equation has no  escape  times on [ to ,  TI, moreover, the solution of 
the  Riccati  equation is one of many  possible  solutions of inequalities 1) 
and 2) of Theorem 3. in fact  being  the  maximal  solution of the  inequali- 
ties. Finally. P as calculated  from the Riccati equation is connected to 
the  optimal cost via the standard  quadratic form. Tracing back to the 
original  control  problem,  the  solution P of (1.12) so generated  defines 
the optimal  cost for each x(ta) for  problem (3.1). Similar  procedures  hold 
for each of the other two  possible  terminating  problems. 

IV. CONCLUSIONS 

The  contributions of the  paper  are twofold.  First, we have tied 
together the existence of a solution to  a  linear-quadratic  control problem 
and the  existence of a solution to  a  linear matrix inequality; because 

there are necessary and sufficient conditions linking the two  existence 
problems, the result  is perhaps tidier than that  involving the  linear- 
quadratic nonnegativity  problem.  Also,  by  involving the  notion of find- 
ing a  performance index  infimum, we have  exhibited a  property of the 
class of solutions to the  matrix  inequality, in  particular,  the existence of 
a  maximal  solution. 

Second, we have  presented a  procedure  for solving  the  matrix  inequal- 
ity, or, what is equivalent,  for computing  the  performance index  infimum 
for the  control problem.  This procedure is computationally  the  same as 
that in [I], but  the thinking  giving  rise to it and its justification  are  quite 
different. 
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Transformational Solution of Singular 
Linear-Quadratic  Control Problems 

DAVID J: CLEMENTS, MEMBER. IEEE. AND 

BRIAN D. 0. ANDERSON, FELLOW, IEEE 

Absfmcf-General  linear-quadratic  singular  variational  problems  with 
free end-point are studied. An algorithm is presented, involving the execu- 
tion  of  a  sequence  of  coordinate  basis  transformations  in the state and 
control  space;  the  algorithm  establishes  whether  a  prescribed  problem has 
a  solution,  determining  the optimal  control  and  performance  index  in case 
the solution exists. 

I. INTRODUCTION 

This  paper studes  the  existence and  computation of optimal controls 
in a general  linear-quadratic  control  problem  without  end-point con- 
straints. A subproblem  is to find  necessary and sufficient  conditions  for 
the  nonnegativity of a  quadratic cost  functional,  subject to linear  dif- 
ferential equation constraints with zero  initial condition; this problem is 
closely  related to the second  variation  problem of optimal  control. 

Specifically.  in  the  finite  interval [tO T ]  consider  the  set U of WI-vector 
piecewise continuous functions u( .). Then for each 12-vector .yo and each 
u( * )  in U, define the  cost  functional 

v [ r , u ( . ) l = x ‘ ( T ) s * ( T ) + I T ~ ( x ( r ) , u ( r ) , r ) d t  (1) 
‘0 
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