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Abstract

A tlass of non
the input and ocutput vectors u  and

sr, finite-dimensisnal, dynamic systems is studied for which
satisfy a passivity condition. It is

shown that such systems may he viewed as a cascade of a memoryless passive
nonlinear system and a dynamic lossless system. The discussion is related to

xnown results on linear network synthesis.

L NTRODUCTION

Classical nerwork synthesis, for linear, lumped,
rinite, passive networks, is concerned with the
prcblem of passing from a port description of a
network in terms of, say, a positive real imped-

ance matrix Z(s), to a coliection of (passive)

3

ctwork elements and a scheme for interconnecting

them to produce a network with impedance matrix
equal to that prescribed, [1-3]. State-space
approaches tn the same problem [4] commence by
assuming known a state-variable realization

{F, G, H, J} (generaily minimal).of Z(s) - thus

Z(s) = J + H-(sI-F) "¢ 1)

and then attempt to comstruct from this an inter-
nally dissipative realization {F, G, H, J}, i.e.

one for which

17 (B8 >0

o -1 (2)
1-(8-6) -(F+F")
Equivalently, one needs to find a positive
definite P such that
i 3+3° -@-pe)7| >0
: LG il e 3

(H-PG) -PF-F’P

Once (2) or (3) is obtained, it is then possible
to define easily a nondynamic coupling network
N , synthesisable merely with (passive) resistors,

atien

c
transformers and gyrators, such that ter
of some of the ports of N. in inductors leads to
an impedance Z(s) being observed at the remain-

ing ports. For derails, see [4].

Our purpose here is to describe how scme of these
results will carry over to a nonlinear situation.

Consider a system described by

X

f{x) + g(x)u
(%)

v h(x) + j(x)u

where wu(*) and y(*) are real m-vector functions
of time, x(*) is a real n-vector function of time
and f£(*), g(*), h(*), j(*) are suitably smooth
real functions of appropriate dimensicn, with

£(0) = 0, h(0) = 0. We call such a system pas-
sive if for all wu(*) and t;, given x(t,) = 0,

one has

[t; uvydt > 0 )

/to

This definition is a natural extension to that

applying in the linear case; one can think of



and

u(*) y(*)

respectivaly, so that the integral im (3) consti-

as current and voltage vectcrs

tutes the cnergy input to a network with port

variables u(*) and y(*), computed over

ts, t;], and with the network initially unexcited.

Our task is to provide a nonlinear intermally
passive synthesis for (4). That is, we wish to
find a nonlinear, nondynamic or memoryless,
passive coupling network together with nonlinear
passive inductors so that the arrangement depicted
in Figure 1 (coupling network loaded at some ports
by (4).

condition on the

by inductors) has u related to y Note

that while (5) is A passivity
network of Figure 1, it is an external one, direct-
ly putting constraints on the port behaviour alone
of the nztwork, and not the behaviour of imternal
variables nor the properties of components within

the network.

Hote also that our specification of both the non-
iinear inductor network and the nondynamic

coupling networl: rezulting from the synthesis pro-

cedure will be simply via port descriptioms of
thess networks - we shall not attempt to describe
how to undo any mutual coupling of the noulinear
inductors for example. Accordingly, the contribu-~
tion to practical network synthesis is virtually
nil; the result is more one concerning the theory
of passive systems, with electrical networks pro-

viding one means of visuaiizing the results.

In section 2, we present baciiground results drawn
from [5] which zllow reinterpretation cf the con-
dition (5) in terms of the state-variable equations
(4).:

present 2 passive synthesis.

These results are used in section 3 to
Section 4 contains
conciuding remarks.

2. BACKGROUND
Returning to the linear problem for the moment, we
note that it is possible to associate with a passive

Z(s)

problem, the solution to which defines a positive

(or positive real) in (1) a variaticnal

definite P satisfying (3). It turns out that
the same sort of idea can be employed in studying

the passivity of (4).

Following [5], we shall assume that (4) is com-
pletely controllable in the sense that for any
finite states x; and x;, there exists a finite

[0, t;]

x(0) = >

time ¢t and a smooth control defined on

1
such that the state can be driven from

to =x(t;) = x;. Further, we assume a form of local

controllability: for any =x, and any x; in a
suitably small open neighbourhood of X, there
exists a u(-} and t, as aboveswith the
additional property that
I ,’tl I >
| | eisinde) < elilx, - =i]) (6)
=2 e
for some continuous 2(*) such that p£(0) = 0.

(This equaticn in effect demands that changes of
state must not use arbitrarily large amounts of
energy). The main thecrem of [5] then states that

a necessary and sufficient condition for (5) to

hold is that there should exist real functicmns

P(*), (*) and w(+j with F(x) con and
with, for all x,
P(x) > 0 and P(0) = O (7
f7(x) VP() = -2"x)i(x)
22 (x) TP = h(x) - w(x)AE) (5)
3+ 37 = W (R)u(x)

These equations generalize those applying in the

linear case, [4]. The results of the linear case
are recovered by setting

hix) = B'x,  §(x) =7

f(x) = Fx, g(x) = G,
and P(x) = x"Px. The
variarional problem used in the linear case vhen
translated to the nonlinear case yields the follow-
ing characterization for one of the functicns P(x)
satisfying (8):
T
2u”(t)y(c)et 9)
4]

{
P(x) = - lim inf i

T=o uf+) -C

Let us observe for later use that (§) imply

[ 360457 h(x)~%g" (x)VP(¥)
liﬁ(x)-%g'(x)??(x)]' - ()P (x)_

= w’(iﬂ fw(x) Z(x)] >0

2'(xj
It is also possible to define a lossless system by

specializing (4) and (5) somewhat, and to cbtain a



Thus we sa

(4) is lessless if (s5) it is passive and (b) if

In this case, the results of [5]
w(x)

both zero, and the matrix on the lcft side of (10)

for all

show that (7) and (8) hold wirh /(%) and

is accor

ngly zero.

rmutually coupled

ucters with current vector 1 and

- . S R

flux vector ¢, the stored emergy is | 1i7(%)d¢;
0

4

st be path-independent for

of the

ductors, i($) mwust be
for some scalar function Q of ¢,

nonnegative on account of the passivity property.

X
witn the vector of in tor fluxes, the func-
tion ~P(x) with the stored cnergy. Since
Pix) 20 for ail x, this means that tho inductors

4re certainly passive, indeed lossless. The

current corresponding to the flux vector = is

P(x

. [In abstract terms, one may regard the

as the nap x=»z7P(x)i].

1, we may =vidently identify the vari-

/P(x) respectively.

2

l.ow observing (4) we see that the only way the

coupling network conid provide the requisite rela-
tion between u and y is if it sustains precise-

ly the voltage-current pairs.

3]

or
'n(.\)+j(><')u—| |
i£( )+g(X)11 -STP(x

Tihese pairs in effect define the coupling network.

dcte that in the event that the map x+—»/P(x)

is invertible, the coupling netweork will be current
controlled (i.e. any current can exist at its
perts) as will the coupled inductors. Further

the coupling network is plainly nondynamic. 1.

¥ +—=TP(x) is not invertible, the netwerk is stiil

to it, wviz, the veetor X%

Let us now observe the passivity of the coupling

network. The instantaneous power flow into the
network is

fu”j " (x)+h"(x) uTg =)+ (%) ] f-

]
—
[+

using (10). GHoreover, in case (4) is lossless,
we know that X£(x) and w(x) in (8) are zero,
and vse of (10) then implies here that the imstanf-
ancous power flow into the coupling network is

zero. Hence if (4) is passive, so is the coupling

netwerk and if (%) is lossless, so is the coupiing

o

netwer

N

&, COKGILSTOXRS
The main result of this paper is the demonstration
that a class of passive systems can be viewed as a

cascade of a memcryless passive system (termed

earlier the coupling network) and a dynamic los
less system (termed earlier the coupled inductor
network). Some immediate variations on this theme

re clearly possible; for example, one could work

0y

with admittances and capacitors, or ome could
exhibit a synthesis starting from an analcgue cf
the scattering matrix. [Results akin to theses of
[3] have been developed by one of the authors

which handle this problem].

Perhaps of more interest would be an examination
of the extent to which reciprocity ideas cculd be
incorporated into the study. Presumably one would
parallel some of the linear system ideas used in

[4], but the details remain unclear.
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Cascade Decomposition of Honlinear

netwaork



