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TABLE I
Time of Pulse Initiation (sec) and
Pulse Polarities in Parentheses
Pulse
Number Case 1 Case 2 Case 3
1 0.000(—) 0.000(—) 6.221(—)
2 0.500(—) 0.300(—) 6.721(—)
3 1.000(—) 1.000(—) 7.221(—)
4 1.806 (+) 1.800(+) 7.721(—)
5 2.306(4) 2.300(+) K.221(—)
6 2.806 (+) 2.800(+) 9.300(+)
7 3.306 (+) 3.300(4) 9.800(4+)
8 3.806 (4+) 3.800(+)
9 4.306 (+) 4.300(+)
10 4.806 (+) 4.800(+)
11 5.434 (—) 0.430(—)
12 3.934(—) 5.930(-—)
13 6.434(—) 6.430(—)
14 6.934(—) 6.930(—)
15 7.434(—) 7.430(—)
16 7.93¢4(—~) 7.930(—)
17 8.434 (=) 8.430(—)
18 8.800 (+) 9.300(+)
19 9.300 (4) 9.800(+)
20 9.800 (+)

Case 3: A cost is applied on pulses and « is equal to 0.1, Fig. 2.
The polarity and time of initiation of pulses constituting the optimal
control «(¢) for these cases are given in Table 1.

It is noticed that, in Case 1, the dead time between the pulses 17
and 18 is less than the allowable minimum dead time, while in Case 2,
the dead time between any to adjacent pulses is equal to or greater
than the required minimum. In Case 3, the spacing between pulses of
opposite polarities is relatively large because the cost involved pro-
hibits pulses when the magnitude of P(f) is small; consequently, it is
irrelevant whether or not a dead time is required between adjacent
pulses of different polarities.

The values of I*(u) obtained for the three cases are —0.0581,
—0.0568, and —0.0339, respectively. Note that the extemum of
I*(u) is decreasing as constraints on the control function are added.
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On-Line Steady-State Control of a Synchronous
Generator

PETER J. WORTLEY axp PETER J. MOYLAN

Abstract—Excitation control of a synchronous generator is dis-
cussed. Linear systems theory is used to derive a simple feedback
formula.

In any attempt to apply optimal control theory to a physical
system, the first step is to obtain the state equations. For a syn-
chronous generator these equations are quite complex with the result
that the optimal controller is also likely to be quite complex. This
note describes a method by which linear optimal control theory may
be applied to the problem of machine control, in such a way that a
relatively simple controller is derived.

A mathematical model for a salient pole synchronous generator
was derived by Park [1] and subsequently used by others [2],[3].
The description is by nonlinear differential equations. In order to
be able to apply results from linear systems theory, these equations
can be linearized for small disturbances about a given operating
condition. The equations depend of course on the operating point.
Such an approach is useful for the steady-state stability analysis of
the machine where only small changes from the operating point
need be considered.

If we consider the svstem operating under steady-state conditions
with constant mechanical input power (i.e., there are no small -
changes 'n input power) then the machine can be described about
that operating point by a time invariant linear 3 X 3 matrix system
relating a change in the field voltage (Avsq) as input to changes in
the state variables torque angle (A3), time derivative of torque angle
(A8), and terminal voltage (Av;). Under these conditions the state
equations can be derived and are given by

i = Fzr + Gu
where

a3

=\ Ad

Ar,
0 1 0 0
F=1¢ C Cif|; G=1|0
Cs G Gy (&)

C,, (5, C4, Cs, and 5 are dependent on the point about which linear-
ization is performed. C; and Cs are constant for a particular machine.

Optimal control theory for linear systems can be applied to the
linearized svstem. This requires the solution of a matrix Riccati
equation to determine the optimal feedback gains. However, if the
machine is to be controlled in this way under all operating conditions
the variations in the F and G matrices necessitate solving the Riceati
equation at each operating point.

Such a proeess is difficult to accomplish on-line in either a digital
svstem or an analogue system, mainly because the Riccati equation
requires more time to solve than can be reasonably allowed.

One solution to this problem is to store the gains for every operat-
ing point of the machine [4]. Below, we indicate a simpler method.

If the state variable r is subjected to a fime invariant transforma-
tion £ = Tz, where

1 1 0 0
T = 0 1 0
CsCs C; Cy s
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TECHNICAL NOTES AND CORRESPONDENCE

then the system is put into canonical form
4 =Fz+ Gog
where

Ad
C:Ch
Ad
Cé_q-l

Ad
CiCs

—Q2 g

N
I
~
[
i
- O

and

o] = C:[Cs bt 0304
ay = CoCs — 0305 -0
—(Cy + Co).

i

a3

Here, a1 and a2 are functions of the operating point (although they
are constant at any given operating point), and as i5 a constant.
When a system is in canonical form it is then possible to stipulate
the eigenvalues of the stabilized system [5] by notihg that the
closed-loop system matrix, F. is given by
where K is the feedback gain matrix.
By arbitrarily choosing an initial set of feedback constants K:
such that

Kl = ("'al; —ag, O)
then the closed-loop system matrix is given by
Fc; = F — é(—ql, — a2, 0)

01 o0
00 1
00

1]

— @3

This intermediaté system is completely controllable, complétely
observable, and has constant eigenvalues 0; 0, — s, independent of
operating point. )
Stabilization of this system is straightforward and can be achieved
either by solution of a matrix Riceati equation or by simple choice of
eigenvalues to yield a further feedback gain matrix R given by

Ry = {y, ko, ko).

R, will be constant for all operating points of the machine and will in
effect determine the response of the machine.

Thus a closed-loop system in canonical form is obtained which is
known to be stable.

A

F. = ﬁ'cl - ékz

0 1 0
= 0 0 1 R
—ki o~k (o + k)

Relating these results to the original system by performing an in-
verse transformation yields a feedback gain matrix K and a closed-
loop system matrix F, given by

A tky — a1) + Ciks (ks — cx2) + Coby k3:I
K = KT = 8
|: CsCr ’ CsCy T Cy
F. = [F — GK] = T-f.T
0 1 0
_ i Ce Cs
- C, — (k1 — en) 4 Cikis C, — (k2 —laz) + Coks Co — ke )
Cs Cs

The eigenvalues of F. are of course the same as those of #, so the
system is stable.

K is dependent on the operatmg point of the machine but can be
hardware implemented and thus used as an on-line stabilizing feed-
back law for the machine.

Note that the final system may not be “optimal” in the normal
sense. However, stability is ensured and the type of response de-
sired can be stipulated.

Further it is not necessary to use the state vector as given above
for the machine des-ription since all descriptions should reduce to the
same canonieal form by & suitable linear transformation 7.
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Elgenvalue Control in Distributed-Parameter Systeins
Using Boundary Inputs

SPYROS G. TZAFESTAS

Abstraci—The feedback eigenvalue control problem of dis-
tributed-parameter systems subject to boundary inputs is solved
and resiilts are derived for both single-eigenvalue and multi-gigen-
value assignment, An illustrative example is included.

I. INTRODUCTION

~ The eigenvalde control problem has received much attention in
recent years [1]-[5]: The majority of the results concern the ease of
lumiped-parameter systems. Our aim here is to solve the eigenvalue
control problem of distributed-parameter systems from their bound-
aries. The approach is based on the Green’s ‘dentity. The results are
usefiil since in most cases the control of practical distributed-param-
eter systems is effected from the boundary surfaces rather than the
interior of the occupied spatial domiains. The theory is illustrated by
means of a simple example.

1I. Tt Bounpary EIGENVALUE CoNTROL PROBLEM

Given a scalar system defined over an n-dimensional spatial
dorhain D with boundary surface #D,

30X (z,t)

PYR A X (z,t), z & D,

t>bh ¢}
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