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following four candidates are proposed; formulas for the smoothed
estimates are given in Table 1.

1) Straight Averaging: This is the analog of (5).

2) Fading-Memory Averaging [6]: This allows tracking of a slowly-
varying p, and helps to discard poor estimates that develop early in
the estimation process when the A are poorly known.

3) Weighted Average: The weighting coefficients in the average are
chosen to minimize the variance of p:, assuming the vy to be un-
correlated, a situation which, hopefully, oceurs once p has been
satisfactorily identified.

4) Fading-Memory Weighted Average: Fading memory is in-
corporated in the weighted average using Sorenson and Sacks’
approach [13].

ApPPLICATION TO FADING-MEMORY FILTERING

These algorithms may be used to adaptively choose the fading
factor in the faded-memory Kalman filter [12] by taking

Ay = HpQeHy' + Ry
P = Hpdp1Zp 14/ Hy

and p as the fading factor.
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A Note on Kalman-Bucy Filters with Zero
Measurement Noise

P. J. MOYLAN

Abstract—The limiting form of the Kalman-Bucy filter as mea-
surement noise tends to zero does not, in general, correspond to the
optimal filter derived assuming zero measurement noise, This may
be considered to be due to a difference in initial conditions.

A standard problem in linear filtering theory is the following:
given the process equations
(1)

y(®)

Fz(t) 4+ Gu(t)
H'z(t) 4+ »(t)

i

where u(¢) and v(¢) are sample functions from independent Gaussian
white noise processes, find a filter generating the conditional mean

£t = Elz@]y(r), to < 7 < 4.

It is assumed that z(f) is a Gaussian random variable, of zero mean
and known covariance Py, and that the noise covariances are also
given as

Efu@u’(r)] = @5t — 7)

and

Elp@)'(7)] = Rt — 7).

If the matrix R is positive definite, the solution is simply a Kal-
man—Bucy filter [1]. If R is singular, however, the problem becomes
more complicated. In the particular case where B = 0, there are at
least two plausible approaches.

1) Assuming £ = eR,, with R, any positive definite matrix, and e
a positive scalar parameter, write down the equations for the Kal-
man—Bucy filter; then take the limit as e — 0. This approach is im-
plicit in, for example, the treatment of Kwakernaak and Sivan [2].

2) Differentiate the measurement process y(t). At least in the case
where H'GQG'H is nonsingular, the new measurement vector y(f)
will contain a nonsingular white-noise component, and again a
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Kalman—Buey filter may be used. This approach has been studied
by Bryson and Johansen [3].

In this note it is shown that these two approaches do not lead to
the same answer. In fact, the limit as ¢ — O for case 1) is not well-
defined—there appears to be a discontinuity in the solution at ¢ = 0.

Consider first the case where R = eRo. The optimal filter is
described [1] by the state equations

#1) = F20) + KOly@®) — H'2)]

where

1
K. @) = p P.()HR,™?

and

Py = E{jzt) — 2O x(®) — 211"}

is the error covariance. The precise form of P.(?) is of no importance
here (it may be determined by solving a Riceati equation), but we
note that

Pi) = Po

for any e > 0. This implies that

1
K (te) = — PoHR, ™!
€

If P iz nonsingular—as is usually the case—then HKé(ta)H will
increase without limit as ¢ — 0. (It will normally also be true that
K. (¢), for any t > f, contains unbounded entries, but this is more
difficult to prove.) The limiting case therefore fails to have a solution,
except in the sense that the optimal filter contains infinite feedback
gains.

Consider now the case where R = 0. The measurement process
now contains no white noise component, being given by

y(t) = H'z(¢).

However, the same information is gained by measuring y(¢), together
with y({). Formally,

y(t) = Hi'z(t) + a(t)
where H, = F'H, and »({) is a zero-mean Gaussian process with
covariance
Elp®u/ (1)) = H'GQG'Hs(t — 1)

2 RS — 7).

At least in the case where R, is positive definite, a standard Kalman—
Buey filter may be derived [3]. The precise details are not important
for our present purposes; it suffices to note that there exists an
estimator of the form

£@) = F2@t) + Kyt — H'2)]

with K (t) well-defined and continuous for all ¢ > t. The need for the
differentiation may be avoided by defining a new fil{er state

(1) £ 2@) — K@y(0).

The filter equations are then

2(1) = [F = KOHY)2(t) + [FK(6) — KOH'K@) — KOly®)

and

#t) = 2(t) + Ky).

A number of further simplifications are possible. The main point,
however, is that the optimal estimate is generated by a filter whose
internal gains are all bounded. The filter cannot therefore be equiva-
lent, in any but a restricted sense, to the limiting case of the Kal-
man-Bucy filter as the measurement noise tends to zero.
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The essential difference between the two problems is in the initial
state estimate. For the case of no measurement noise, this is given by

E(to) = Elzlto)|yto)]

and it is easy to show that this is in fact
£(to) = (H'Yy(te) (1)

where ( )f denotes a pseudo-inverse. For the Kalman-Bucy filter,
on the other hand, y(%) contains no useful information, since it is &
point sample from a random process containing a nonsingular white
noise component. The best initial estimate is therefore simply the
a priort expectation of the initial state, which is zero.

On physical grounds, one would expect the estimates £(¢) from
the two filters to approach each other with probability one; it is then
reasonable to expect a large initial transient in the low-noise Kalman—
Buey filter, as £(¢) is in effect adjusted from a poor initial estimate to
a more accurate state estimate. This would aceount for the un-
bounded filter gains.

It is interesting in this connection to note an apparent discrepancy
between the results outlined above and those of [3]. The authors of
[3] report a discontinuity in £(t) at ¢ = &, but the above analysis
shows no such discontinuity. The difference, again, is in the initial
conditions: Bryson and Johansen [3] assume that y(%) is unavailable
for measurement, so that (1) may not be used. On the other hand,
they do derive an expression similar to (1) for £(to*), so that the
discrepancy is more apparent than real.
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Optimum Measurements for Estimation

K. D. HERRING axp J. L. MELSA

Abstract—This correspondence considers the class of estimation
applications in which a choice of measurement devices is possible.
A cost is associated with each measurement device. An optimization
procedure is presented which minimizes the measurement cost
while maximizing estimation accuracy.

1. INTRODUCTION

In many estimation applications, the measurement or observation
model is specified except for certain parameters. The optimal selec-
tion of such parameters has been investigated by several authors
[1]-[3). In a special case of this general problem [4], these param-
eters represent switching functions which, when optimized, deter-
mine which single measurement device should be used at each in-
stant of time during the measurement interval to achieve the best
estimation results. This correspondence generalizes these results to
allow the selection at each instant of time of the best combination of
devices, as opposed to the best single device.
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