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Synthesis of Linear Tim&Varying Passive 
Networks 

BRIAN D. ANDERSON, MEMBER, IEEE, AND PETER J. MOYLAN, MEMBER, IEEE 

Abstract-A state-space synthesis procedure is given for linear time- 
varying passive impedance matrices. The synttksis uses only passive 
components. 

I. INTRODUCTION 

I N THIS PAPER, we consider linear lumped finite net- 
works composed of interconnections of time-variable 

and passive resistances, capacitances, inductances, gyrators, 
a,nd transformers. The main problem considered is to pass 
from an input-output, or port, description of the network 
(in terms of its impedance matrix) to an internal description 
(in terms of a set of element values, and a scheme for 
interconnection). \ 

Amidst prior work on this and related problems, we 
note especially the, work of Spaulding, e.g., [l], [2], who 
obtained some necessary conditions for a prescribed im- 
pedance matrix to be passive, and necessary and sufficient 
conditions for a prescribed impedance matrix to be the 
impedance of a network containing all lossless elements. 
He also obtained a synthesis procedure for this latter class 
of impedances. Another,impedance synthesis firoceduie for 
lossless element networks was derived by Saeks [3], paral- 
leling the Cauer synthesid:, while [4] presents a lossless 
synthesis based on the scafiering matrix. 

Further necessary conditions on an impedance matrix 
f r it io be associated with a passive element network were 
P erived in [S], and more recently, some characterizations 
of passivity, using a state-spape description of a prescribed 
impedance, were obtained in [6] and [7]. 

The material closest to that presented in this paper is, 
however, [S]. In [8], &thesis procedures were obtained 
given the validity of a certain conjecture; this conjecture 
was known to be true for a limited class of impedances, 
atid the claim of the conjecture was its truth for all passive 
iin$edances. Much of this paper, in effect, amounts to an 
examination of this conjecture and a delineation of when it 
is true. 

The broad structure of the paper is as follows. We 
assume there is given the state-space equations 

i = F(t)x + G(t)u u = H’(t)x + J(t)u (1) 
of a time-varying impedance matrix Z(t,z), which is related 
to F(e), G(a), H(s), and J(s) by 
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Z(t,r) = J(t)&t - r) + H’(t)@(t,z)G(z)l(t - z). (2) 

In (l), u(a) and u(.) denote, respectively, the port voltage 
and current vectors of some network with impedance 
Z(* , *). In (2), 6( .) and l(a) are, respectively, the unit 
impulse and the unit step function, and Q( +, a) is the tran- 
sition matrix of F( *). The synthesis problem is one of passing 
from Z( *, *) to a network with impedance Z( a, a). (Slightly 
more complex Z(. , *) will be considered in the sequel; for 
this discussion, though, (2) will be adequate.) If Z(* , *) 
alone is known, rather than F(a), G(a), H(e), and J( *) 
separately, it is a standard procedure of linear system 
theory to find t;(.), G(.), H(a), and J(e) from Z(*;); 
therefore, we shall assume such matrices are all known 
a priori. 

The impedance Z(*, a) corresponds to a passive network 
if one has for all times lo and t,, t, < C, and all u(e): 

t1 fl 

ss 
u’(t)Z(t,r)u(r) dt dz 2 0. (3) 

(The double ilgcl on the left is the energy supplied to the 
network over [to,tl] with the network initially in the zero 
state.) 

The first major step is to use the passivity property (3) to 
conclude the existence of at least one nonnegative definite 
symmetric matrix P( *) such that 

[ 
-PF-F’P-P H-PG 

(H - PG)’ 1 >. 
J+J’ - . (4) 

A complete controllability dondition on [F,G] must be 
assumed, and existence of P(a) is actually guaranteed in 
the first instance if J + J’ is nonsingular. In case J + J’ is 
singular, we show that P( *) satisfies a slightly weaker con- 
dition than (4), but may satisfy (4) also. In case [F,H] is 
completely observable, P(a) is nonsingular. 

Following proof of the existence of P( *), we show how to 
compute iuch a P(e). In so doing, we give conditions apply- 
ing to the case of J -t J’ singular for P(e) to satisfy (4) 
rather than the slightly weaker condition. 

The matrix P(e) is now used to define a coordinate basis 
transformation; the new state-spa$e equations then allow 
both reactance extraction and resistance extraction syn- 
theses. The idea of these syntheses in the time-invariant 
case is discussed in [9]-[l l], and their use in time-varying 
problems appears in [S] and [12]. 

The computation of P( 0) when J + J’ is singular can, if 
desired, proceed via a series of steps which, from the syn- 
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thesis point of view, correspond to extraction of series 
inductor and shunt capacitor elements, such as occurs in 
the “preambles” of many classical time-invariant synthesis 
procedures. This interpretation will be made clear sub- 
sequently. 

II. NECESSARY AND SUFFICIENT CONDITIONS FOR THE 
PASSIVITY PROPERTY 

Suppose N is a multiport network comprising a finite 
number of passive resistors, capacitors, inductors, trans- 
formers and gyrators, any of which may be time-variab1e.r 
Suppose also that the variations are smooth, and the net- 
work is such that there exists an impulse response matrix 
Z(* ;) mapping port current vectors a(.) into port voltage 
vectors u(e). Then Z(. , *) is the impedance matrix of N and 
necessarily has the form 

Z(t,r) = fJo Zi(t)G”‘(t - Z) + H’(t)@(t,r)G(r)l(t - 7). 

(5) 
Passivity of the network components implies, by, for 

example, Tellegen’s theorem, passivity of the impedance 
matrix in the sense that 

fl fl 
~t~o,wt-)) = 

ss 
u’(t)Z(t,r)u(r) dt dz 2 0 (6) 

to to 
for all t,, and t, with f. < t,, and all sufficiently smooth 
u( *). This passivity property constrains the structure of 
Z(t,z) more than (5) would indicate. 

Lemma I : With Z( *, *) as defined previously and satisfy- 
ing (6), Z( a, a) can be rewritten as 

Z(f,T) = T’(f)G”‘(f - z)T(z) + J(f)s(f - z) 

+ H’(f)@(f,z)G(7)l(f - 2) (7) 

and both T’(f)G(“(t - z)T(z) and 

i&r) = J(t)s(t - 2) + H’(t)@(t,z)G(z)l(t - z) (8) 

individually satisfy (6). 
For a proof, based on [l] and [S], see Appendix II. 
The significance of Lemma 1 is that it reduces the problem 

of synthesizing an arbitrary impedance Z(*, *) to the prob- 
lem of synthesizing an impedance of the form of (8): an 
arbitrary impedance has the form (7), and can be synthesized 
as a series connection of a synthesis of &t,z), and trans- 
former-coupled inductors. The transformer-coupled induc- 
tors, of course, synthesize the term T’(t)G(“(f - z)T(z), 
actually by terminating the secondary ports of a time- 
varying transformer of turns-ratio matrix T(a) in unit 
inductors. Similar ideas are well known for time-invariant 
synthesis [ 133. 

Let us now study passivity properties for Z(.;); we drop 
the superscript hat. Setting R = J + J’, and taking cog- 
nizance of the state-space equations (1) for Z( *, a), the 

1 For definitions of these quantities, see Appendix I. 

passivity condition (6) can be rewritten as 

1 
t1 (2x’Hu + u’Ru) df 2 0 
to 

(9) 

which holds for all u(e) and fI, given x(fo) = 0. Obviously, 
one necessary condition for this is R 1 0. Various other 
necessity and sufficiency conditions for (9) are also known, 
see, e.g., [6], [7], and the survey [14]. Here, we shall use 
a condition that is both necessary and sufficient in case 
R > 0, and two slightly distinct conditions, one necessary 
and one sufficient, in case R is singular (there does not 
appear to be a single necessary and sufficient condition). 
We require the following assumptions. 

Assumption 1: For all t, there exists f, < t such that (1) 
is completely controllable on [t,,,t], i.e., every state at time 
t is reachable from the zero state at time to. 

Assumption 2; The matrices F, G, H, and J have con- 
tinuously differentiable entries. 

Nonsingular Problem-Necessity Conditions: This is avail- 
able in [7]. Under Assumptions 1 and 2 and (9), there 
exists a nonnegative definite symmetric matrix P(f) defined 
by 

-P = PF + F’P + (PG - H)R-‘(PG - H)’ (10) 

satisfying the limiting boundary condition’ lim,,,, P(tl) = 
0. We remark that P(f) yields the solution of a minimization 
problem for (1): 

-x’(f)P(f)x(f) = inf 
s 

m (2x’Hu + u’Ru) dt. (11) 
UC.) t 

Notice also that with R > 0, (10) implies 

M(P) = -PF-F’P-P H-PG 
(H - PG’)’ R 1 2 0. (12) 

If (12) holds for some nonnegative definite symmetric P(f), 
it does not follow that this P(f) satisfies (10). However, in 
a roundabout sense, (12) does imply (10) for some other 
P(a), because it implies the passivity property as shown 
below, and this in turn implies (10). 

Nonsingular Problems-S@ciency: With R > 0, exis- 
tence of some nonnegative definite symmetric P(a) satisfying 
(12) is sufficient to guarantee (9), for simple manipulation 
yields 

s 
” (2x’Hu + u’Ru) dt 
to 

= 
s 

t’ (2x’Hu + U’RU + x’P(k - Fx - Gu)) dt 
to 

= j-r [xl u’] [ -p&-sF;,; ’ H ,‘1 [j dt 

+ x’(~l)P(h)x(h>. 

z More precisely, let II,,(.) ,b” the. solution of -e = lTF + 
f” - (ITG - H)fC’(IIG - H), satisfying lX,(t,) = O..Then P(r) = 

fl+ m I&,(t). Existence of the limit is one of the technical questions 
taken up in [71. 
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(This line of argument is due to Jacobson, see, e.g., [14].) 
Notice that there may be many nonnegative symmetric P(m) 
satisfying (12), and that they do not necessarily satisfy (lo), 
let alone (10) with its limiting boundary condition. 

Nonsingular Problem-Reformulation of Conditions: The 
preceding arguments show that a necessary and sufficient 
condition for (9), given that R is nonsingular, is that there 
should exist a nonnegative symmetric P(t) satisfying (12). 
One such matrix P(t) can be computed via (lo), using the 
associated limiting boundary condition. 

Singular Problem-Necessity Conditions: Certainly R 2 0 
is a necessary condition. But now (10) cannot be formed. 
We proceed by following ideas of [IS] and [la]. Let P,(t) 
be defined for arbitrary E > 0 by 

-x’(t)P,(t)x(t) = inf 
s 

O3 (2x’Hu + u’Ru + EU’U) dt. 
UC.) f 

(13) 

Existence of a nonnegative definite symmetric P,(a) follows 
as in [7], and P, satisfies (10) with P replaced by P, and R 
replaced by R + ~1. Now from (13), it is easily seen that 
P,(t) for fixed t increases monotonically as E + 0, while it 
is bounded above for all E < some s1 by a simple con- 
trollability argument, such as is used in [7] in study of the 
nonsingular R case. Hence lim,,, P,(t) = P(t) exists and 
is nonnegative definite symmetric. 

One cannot conclude that (12) then holds for this P(e), 
since P( *) does not necessarily inherit the differentiability 
of P,( *). However, we can get something very close. Since 
(12) holds for P,( *), we have for all to and tl and continuous 
w( *) positivity of the following Stieltjes integral 

-0’3 + F’PJ dt - dP, W - PeGI dt 
(H - P,G)’ dt R dt 1 w(t> 

By the Helly convergence theorem [I 71, the evident bounded 
variation property of P,(t) is inherited by P(t) and 

Lemma 2: A sufficient condition that the passivity in- 
equality (9) should hold for x(t,) = 0, arbitrary tl, and all 
u( *> is that there should exist a nonnegative symmetric P( *) 
such that (12) holds. In case R is nonsingular, this condition 
is necessary, and one such P(e) can be found from (10) 
with the limiting boundary condition lim,,,, P(t,) = 0. 
In case R is singular, it is necessary that there exist a non- 
negative symmetric P(*) satisfying condition (14). 

Bounds on P(t): For bounded F, G, H, and J and a 
uniformly completely controllable pair [F,G], it is shown 
in [7] for the case of nonsingular R(m) that the matrix 
P(t) defined by the variational problem is bounded on 
(- co,co). A minor variation in the argument extends the 
result to the singular case, when the matrix P(t) is de- 
termined via lim,,, P,(t), with P,(t) as defined previously. 

Note that this bound has not been established for any P 
satisfying (12) or (14). It has only been established for one 
particular P satisfying (12) or (14), viz., that obtained from 
consideration of the minimization problem. 

Nonsingularity of P(t): In the sequel, it proves we shall 
require that P(t) be nonsingular. In the following lemma, 
we give. a reasonable condition for any nonnegative sym- 
metric P(t) satisfying the sufficiency condition (12) to be 
nonsingular. 

Lemma 3: Suppose [F,H] is observable for all time, in 
the sense that if for any r, one has 

H’(t)Q(t,z)x, = 0 

for all t, then x0 = 0. Then any nonnegative symmetric 
P(t) satisfying (12) is nonsingular. 

Proof: Suppose P(z)xo = 0 for some r and some 
x0 # 0. Set X(t) = W(t,z)P(t)@(t,z) so that x(t) = 
W(t,?)[PF + F’P + P]Q(t,z) I 0 by (12). Now P(z)xo = 0 
implies X(7)x, = 0, which in turn implies X(t)x, = 0 for 
all t 2 z, because x(t) I 0. Then also 8(t)x, = 0 for all 
t 2 2. Hence 

P(t)Q(t,z)xo = 0 

-(PF + F’P) dt - dP (H - PG) dt 1 w(t) 2 o [PF + F’P + P]Q(t,z)x, = 0. 

(H - Pq)’ dt R dt The nonnegativity of (12) then implies H’(t)@(t,r)xo = 0, 
(14) 

for all to, t,, and continuous w(m). This nonnegativity, 
coupled with that of P(t) itself, constitutes the necessary 
condition. 

Singular Problem-Suficiency Condition: The argument 
used for the nonsingular case follows with no change to 
show that (9) is implied by the existence of a symmetric 
nonnegative P(t) of differentiable entries for which (12) 
holds.3 (Note that such a P(t) is not necessarily defined by 
the minimization procedure used in deriving the necessity 
condition.) 

Let us sum up these results. 

and so x0 = 0, which is a contradiction.4 
Lower Bound on P(t): A variation on the preceding 

argument will show that if F, G, H, and R are bounded 
and [F,H] is uniformly completely observable, then P(t) is 
bounded below for all Y, i.e., P-l(t) is bounded. (Arguments 
for the case of nonsingular R can be found in [7].) 

For a summary of the results of this section, see Fig. 1. 

III. COMPUTATION OF P(t) 
In this section, our aim is to suggest a computational 

procedure for obtaining a nonnegative symmetric matrix 
P(t) satisfying 

M(P) = -PF--‘P-P H-PG 
(H - PG)’ R 1 1 0. (12) 

3 Of course, nonnegativity of the Stieltjes integral in (14) for some 
nonnegative definite symmetric P(t) of bounded variation and all 
continuous w( .) is also sufficient (and, therefore, necessary and 
sufficient) for (9) to hold. But this form of condition IS not helpful for 
synthesis. Therefore, the stronger condition is introduced. 

4 A minor variation in the argument extends the conclusion to P(t) 
satisfying (14) rather than (12), but this fact will not be used. 
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I I I 1 

onsingular R 
heory and Helly 

This equivalence This equivalence 
if and only if 

for some P > 0 limiting P 

L I I 

tb) 
Fig. 1. Passivity conditions. (a) R nonsingular. (b) R singular. 

Of course, if R is nonsingular, one such procedure is known. 
Our real interest is therefore in the case of singular R. Two 
points are then relevant. First, there may be no P(a) satisfy- 
ing (12). In this section, we shall introduce extra conditions 
that will guarantee existence of such a P(.). The extra 
conditions in the main amount to demanding constancy of 
rank of certain quantities. Second, one could think of 
finding P(.) as the limit of the matrices P, defined earlier; 
while this is perfectly true, the procedure is obviously com- 
putationally unwieldy, it leaves untackled the question of 
whether the limiting P(a) satisfies (12) or merely the weaker 
condition (14), and it leaves open the question of whether, 
should the limiting P(e) not satisfy (12), there are other 
P(e) that do satisfy (12). 

Let us therefore assume that R(.) is singular. In what 
follows, we shall present a recursive procedure which at 
each step of the recursion replaces the problem of finding a 
P satisfying (12) by one of finding a P satisfying a condition 
like (12), save that either the dimension of F is reduced, or 
the number of columns of G is reduced, or R is nonsingular. 
The recursion must terminate when either F shrinks to zero 
dimension, or G and H shrink to having zero columns, or 

one encounters a nonsingular R. (Actually, the preservation 
of complete controllability at each step of the recursion 
rules out the second possibility.) In case the recursion 
terminates with F of zero dimension, P has zero dimension 
and so the problem of finding it is vacuous. In case a non- 
singular R is encountered, one can find a P(a) by the 
procedures already given. 

Let us make several preliminary observations. 
1) The problem of finding a nonnegative symmetric P to 

satisfy (12) is equivalent to the problem of finding P to 
satisfy (12) with R(t), G(t), and H(t) replaced by, respec- 
tively, l?(t) = S’(t)R(t)S(t), G(t) = G(t)S(t), and I?(t) = 
H(t)S(t) for any nonsingular matrix S(t) of differentiable 
entries. With obvious definition of a(P), clearly A(P) 2 0 
if and only if M(P) 2 0, and a similar statement holds in 
respect of the integral inequality (14). Notice too that if and 
only if the passivity condition (9) holds for (l), then the 
same condition with fi replacing Hand i? replacing R holds 
for (1) with G replacing G (and, actually, li = S-‘u re- 
placing u); also, Assumptions 1 and 2 are equivalent for 
the two sets of quantities. 

2) The problem of finding a nonnegative symmetric P to 
satisfy (12) is equivalent to the problem of finding a non- 
negative symmetric fs to satisfy (12) with F, G, and H re- 
placed, respectively, by P = TFT-’ + FT-‘, e = TG, 
and fi = (T-‘)‘H. Here, T is an arbitrary nonsingular 
matrix with differentiable entries..If, then, i@(p) 2 0, then 
M(P) 2 0 and conversely, where P = T’PT. Again, a 
similar statement holds in respect of the integral inequality 
(14). The passivity condition (9) holds for (1) if and only if 
it holds with fi replacing H in (9) and P and G replacing F 
and G in (1) (and, actually, ~2 = TX replacing x); also, 
Assumptions 1 and 2 are equivalent for the two sets of 
quantities. Finally, P is nonsingular if and only if P is 
nonsingular. 

Observation 1) is concerned with input (or port) trans- 
formations, and observation 2) with coordinate-basis trans- 
formations. Interpretations from a synthesis point of view 
will be given subsequently to some of these transformations, 
but to avoid clouding the issue, we will postpone such 
interpretations. The recursive procedure now follows. 

Step I: Select a nonsingular S(a) of differentiable entries 
so that 

l?(t) = S’(t)R(t)S(t) = 1 
with &, nonsingular. 

Assumption 3: R(t) has constant rank. Under this as- 
sumption, it follows that S(a) exists, being definable by the 
Lagrange method [18] in terms of the entries of R(e). Set 
e(t) = G(t)S(t), B(t) = H(t)S(t), and now seek P(t) 
satisfying h(P) r 0. Drop the superscript hat. 

Step 2-Input or Port Vector Dimension Reduction: 
Suppose G(t) is of dimension n x r. Partition it as 
[G,(t) G,(t)] with G,(t) of dimension n x pl. Make the 
further assumption : 

Assumption 4: G,(t) has constant rankp I pl. Ifp = pl, 
pass to Step 3. Otherwise, let So(t) be a nonsingular 
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pl x p1 matrix with differentiable entries such that 
GWo(t) = l&W 01 with G,(t) having p columns. 
Set S(t) = I@ So(t) with the unit matrix of dimension 
(r - pl) and define &t) = S’(t)R(t)S(t), i?(t) = H(t)S(t), 

I and e(t) = G(t)S(t). This yields, dropping the superscript 
hat again, 

R(t) = R$) o ’ 
PlXPl 1 

G(t) = [G,(t) G,(t) %qp,-pjl 
H(t) = CH,W H,(t) H&)1- 

Now observe that we must have H3(t) = 0. Let P(t) be 
that particular matrix appearing in the necessity condition 
(14). Writing w(t) = [w,‘(t) wz’(t)]’ with w2(t) of dimen- 
sion pl, one obtains from (14) 

s 

fl 

s 

t1 
w,‘(NdY(Olw,(t) + 2 wl’(t)H3(t)wz(t) dt 2 0 

to to 
for a certain dY(t) whose form is inessential. Since the 
inequality holds for all continuous WI(t) and w2(t), one 
must have H3(t) = 0 almost everywhere. Since H(e) is 
continuous, H3(t) = 0. 

Now define 

R(t) = [Rag(f) opt,1 
@t> = [G,(t) ‘&WI 
fi(t) = [H,(t) H,Wl- 

Though not covered in our preliminary observations, the 
effect of this transformation is easily seen. One has fi(P) 2 
0 if and only if M(P) 2 0, and with a similar remark hold- 
ing for the integral inequality (14); one has the passivity 
condition linking (1) and (9) for the superscript hat quan- 
tities if and only if the same is true for the original quantities, 

I and likewise Assumptions 1 and 2 hold for the superscript 
hat quantities if and only if they hold for the original 
quantities. 

If now p = 0, a matrix P(t) satisfying h(p) 2 0 can be 
immediately found because f? is nonsingular. Otherwise, 
proceed to Step 3, again dropping the superscript hat 
quantities. 

Observe that the effect of this step has been to reduce the 
dimension of the matrices R, G, and H, i.e., the dimension 
of the vectors u and a appearing in (1) and (9). 

Step 3-State-Space Dimension Reduction: Using the 
fact that G,(t) hasp columns and rankp, select a coordinate- 
basis change matrix T(t), nonsingular and with differentiable 
entries, such that 

with P,, of dimension p x p, and partition H similarly to 
G. Now observe that the last p rows and columns of R are 
zero, which means that if P is to satisfy (12), viz., M(P) 2 0, 
one must have the last p columns of H - PG zero, whence 

09 

Therefore, the sufficiency condition (12) uniquely identifies 
three of the submatrices of any, and all, matrices P satisfying 
M(P) 2 0. Actually, the necessity condition (14), known 
to be satisfied by a matrix P not necessarily satisfying (12), 
also yields P12(t) = H,,(t) and Pz2(t) = H,,(t) almost 
everywhere. An argument contained in [15, proof of 
theorem Al] then shows that the equalities hold everywhere. 

In summary, under Assumptions 1-4, there exists one 
nonnegative symmetric P(t) satisfying (14) and (15), and 
any nonnegative symmetric P(t) satisfying (12) must also 
satisfy (15). 

Now suppose that [F(t),H(t)] is completely observable, 
so that any P(t) of interest is nonsingular. In particular, 
Pz2(t) = H,,(t) must then be nonsingular. Define a further 
coordinate-basis change 

T(t) = Z2-1;t)HlZ’(t) -H I” * 1 
Obviously, T(t) is nonsingular for all t. Now set P = 
TFT-’ + ?T-‘, etc. One obtains 

fi (t> 
‘@) = [H;;(t) Hz:(t) 1 

P(t) = 
with P,, = P,, - H12H22-1Hl,‘, and G,, and l?,, de- 
fined in the obvious manner. [In computing P, (15) is used.] 
This transformation of P applies both to the matrix known 
to satisfy the integral inequality (14), as well as any matrices 
that may satisfy the sufficiency condition (12). Dropping the 
superscript hats again, the sufficiency inequality (12) be- 
comes 

0 

w = TWW = G,,(t) 0 G,,(t) Ipxp 1 . HII - PIIGII 0 
Define fi and fi by the usual formulas, and regard our 

Hz, - H&&I 0 
RO 

o 2 0 (16) 
problem as one of finding ia such that s(p) 2 0 (for, as 0 0 
noted earlier, P such that M(P) 2 0 is given by P = I 

T’PT). Now drop the superscript hats again. Partition P as and the necessity inequality (14) exhibits a similar pattern. 
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With reference to both inequalities, make the following 
definitions : 

P = P,, P = F,, 

e = CFiz GIII fi = C-Fm’H,, HII] 

ti= -HzzFzz - Fn’Hn - H22 H21 - HdG, 

H21’ - G21’fh 1 Ro . 

(17) 

Then the necessity condition for P translates into a condi- 
tion that there necessarily exists a nonnegative symmetric 
P (nonsingular with P nonsingular) such that 

(-BP - p’p) dt - dp (I? - %) dt 
(I? - @)’ dt ri dt 1 Q(t) 2 0 

for all continuous G(e), and the problem of finding a 
positive definite symmetric P satisfying the sufficiency con- 
dition (16) becomes a problem of finding a positive definite 
symmetric fi such that 

The crucial point is the reduction in state-space dimension 
achieved. If a is nonsingular, p can be obtained immedi- 
ately. If not, then the stage is set for further applications of 
Steps 1-3, provided that Assumptions l-4 continue to be 
satisfied. [Actually, Assumptions 1 and 2 will always con- 
tinue to be satisfied. Assumption 1 certainly carries through 
to the penultimate part of Step 3, and it is in fact not hard 
to show that if the pair 

[ ::g; ::y [:::I:; i] 

has the controllability property, so does the pair 

[FIII CF12 G,,l. 
Carry through of the observability property follows sim- 
ilarly. Hence Assumption 1 remains in force. That Assump- 
tion 2 remains in force is also easily seen. On the other 
hand, Assumptions 3 and 4 need to be reinvoked each time 
one cycles through Steps l-3.1 A diagrammatic representa- 
tion of the algorithm is shown in Fig. 2. 

Of course, the repeated cycling through Steps 1-3 must 
end; either a nonsingular R matrix is encountered, or a 
dimension shrinks to zero (as when, for example, in Step 3, 
the matrix P becomes identical with Pz2). In case a non- 
singular R is never encountered, the whole of the P matrix 
ends up becoming identified as in Step 3. Now, as pointed 
out in Step 3, the P matrix satisfying the integral inequality 
of the necessity condition is identified in this step; it must 
therefore be the case that the matrix P(t) obtained in this 
way is also that obtained by the minimization procedure 
leading to the necessity condition. On the other hand, if a 
nonsingular R is encountered, the P matrix satisfying the 
sufficiency condition need not be that which solved the 
minimization problem, although the P matrix that is most 
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APPLY 
step 1 

I 

Apply Step 2 

YES 

Apply Step 3 
(Reactance Extraction) 

dimension = 0 

stop 

Fig. 2. Flow chart for algorithm of Section III. 

easily found is precisely that satisfying the Riccati equation 
(10) and therefore the necessity condition. Either way then, 
the P matrix found by the procedures of this section can be 
made to coincide with that P defined by the minimization 
problem stated earlier. 

Note, incidentally, that all the transformation matrices 
T(t) and S(t) introduced in the algorithm are nonsingular 
(for all t) and therefore rank preserving. It is not hard to 
deduce from this observation that the satisfaction or other- 
wise of Assumptions 3 and 4 depends only on the original 
Z(t,z) and is independent of the particular method used to 
choose T(t) and S(t) at each step of the algorithm. Un- 
fortunately, there does not appear to be a simple check in 
terms of the matrices F(t), G(t), H(t), and J(t) defining 
Z(t,z) on whether Assumptions 3 and 4 are in fact satisfied, 
other than by attempting to apply the algorithm of this 
section. 

Network theoretic interpretations of these steps will be 
given in Section V. In the next section, we indicate the 
synthesis procedure. 
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IV. SYNTHESIS PROCEDURE 

In this section, we return to the problem of synthesizing 

Z(t,z) = J(t)J(t - z) + H’(t)Q(t,z)G(z)l(t - r). (2) 

We shall suppose that the various assumptions given pre- 
viously have allowed the derivation of a nonnegative sym- 
metric P(t) such that 

[ 
-PF-F’P-P H-PG 

(H - PG)’ 1 >O 
J+J’ - (12) 

and we shall suppose further that [F,H] is completely 
observable for all time, so that P(t) is nonsingular; by 
Lemma 3. Since P(e) is differentiable, we can find a non- 
singular T(t) of differentiable entries (by, for example, the 
Lagrange method) such that P(t) = T’(t)T(t). Now set 
P = TFT-’ + PT-‘, G = TG, and fi = (T-l)‘H. Then 
(3) becomes 

[ - 

$j! +&’ 
I 

,“--,” 
I 1 > 0 

- * (18) 

Synthesis is now immediate, by either the reactance extrac- 
tion [9], [l l] or resistance extraction [IO]-[12] approach. 
Since a time-varying version of the resistance extraction 
procedure is to be found in [IZ], we shall summarize only 
the reactance extraction procedure, which is almost the 
same as for the time-invariant case. Equation (18) implies 
that the matrix 

has a symmetric part that is nonnegative definite. This 
means that the time-varying impedance matrix 

Z&,4 = [ -m m -e(f) Y(t) 1 s(t - z, (20) 

satisfies the passivity condition. It is easily synthesized as 
the series connection of syntheses of +(N + N’)6(t - r) 
and $(N - N’)6(t - z), which are achievable, respectively, 
with transformer-coupled resistors and transformer-coupled 
gyrators. The only difference from the time-invariant case 
[9], [l 1) is that the transformers are time varying. 

As for the time-invariant case, termination of the first 
n A dim E ports of the network synthesizing Z,(t,r) in 
unit inductors yields a synthesis of Z(t,z). 

As remarked in Section III, the matrix P(t) found by the 
procedures of Section III can be taken to be the solution of 
the minimization problem introduced in Section II. If this 
is the case, if F, G, H, and J are bounded, and if [F,G] and 
[F,H] are, respectively, uniformly completely controllable 
and uniformly completely observable, P(t) and P-‘(t) are 
bounded. If also P is bounded,’ then T(t), P(t), G(t), and 
B(t) will be bounded. The result is that a synthesis using 
bounded components follows, as argued in [12]. 

5 In the event that P(r) is defined by the Riccati equation (10) and 
I R-‘(t) is bounded, a bound on @ follows from bounds on F,G,H, 

and P. If R(t) is singular, boundedness of j(t) does not follow without 
various boundedness conditions on the state coordinate basis and port 
transformation matrices introduced in Section III. 
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V. ALTERNATIVE SYNT~IS PROCEDURE 

In Section IV, a synthesis of Z(t,z) was achieved after 
solving for the matrix P(t) appearing in the passivity con- 
ditions; as was shown in Section III, this matrix may 
actually be computed by a sequence of transformations on 
the various matrices defining state-space equations for 
Z(t,r). It will now be shown that each of the transformations 
of Section III has a simple physical interpretation in terms 
of the network to be realized. Using this observation, it is 
possible to carry out the synthesis in parallel with the 
computation of P(t). Although the resulting synthesis does 
not differ substantially from that of Section IV, the pro- 
cedure to be described does illustrate vividly the motivation 
for and implications of each step used in computing P(t). 

Suppose, as in earlier sections, that the network to be 
synthesized is described by the equations 

R = F(t)x + G(t)u 

u = H’(t)x + J(t)u. 

The earlier computations have, in effect, been described in 
terms of transformations on the matrices F(t), G(t), H(t), 
and J(t). However, one can also interpret them as trans- 
formations on the vectors x, u, and tr. Basically, there are 
three classes of transformations used. 

Class A-Port Vector Transformations: Here, a new set 
of port vectors il and 8 are defined via 

0 = S’(t)u 22 = s-‘(t)u 

for some nonsingular matrix S(t). These equations may be 
written more compactly as o= 0 [I [ F(t) -ti u I[ 1 -S(t) 0 u * 
Clearly, the new port variables may be derived from the 
original u and v via a transformer of turns-ratio matrix 
S-‘(t). The state equations are now of the form 

i = P(t)x + G(t)a 
0 = B’(t)x + Y(t)d 

where 
P = F G = GS fi = HS and 9 = S’JS. 

Class B-State Vector Transformations: By setting Z = 
T(t)x, for some nonsingular T(t), the appropriate changes 
are now p = FT-’ + TFT-‘, G = TG, fi = (T-‘)‘H, 
and .? = J. Note, however, that this merely implies a 
change in the internal description of the network. The port 
vectors are not affected, so that no corresponding synthesis 
step is implied. 

Class C-Partitioning of the State Vector: If x is parti- 
tioned so that x’ = [xl’ x2’], it may be that the network 
can be viewed as the interconnection of two smaller net- 
works, with state vectors xl and x2. 

The synthesis procedure will now be described. Step 0 
has no direct equivalent in terms of the earlier calculations, 
since these deal only with the symmetric part of J. The 
remaining steps parallel the corresponding steps in Section 
III. 
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~L$@y~ 
Fig. 3. Port transformer extraction. 

Ul,U2 - 

IF= U3 + cl v3 
Fig. 4. Elimination of redundant ports. 

I Step O-Gyrator Extraction: Set 

0 = H’(t)x -t j(t)u 
where 

.3(t) = $[J(t) + J’(t)]. 

Then u = 8 + *[J(t) - J’(t)]u, where the second term 
may be realized as a multiport transformer terminated in 
gyrators [S], as for the time-invariant case [13]. 

Step I: This is simply a transformation of Class A given 
previously. A transformer is extracted from the network, as 
shown in Fig. 3. 

Step 2: Again, a transformer is used. At this point, the 
new state equations reduce-with a suitable partitioning of 
u and u-to the form 

1 = F(t)x + [G,(t) G,(t) 0] u2 [I [2] =[2yx+~) i g;;ii, 
where ug and uj each have (pl - p) entries. Clearly, u3 
does not affect the equations, and uJ is identically zero. The 
last (pl - p) ports of the transformer should therefore be 
terminated in short circuits, as shown in Fig. 4. 

The multiport transformer of this step is actually cascaded 
with the transformer produced in Step 1 and, moreover, 
some of the turns are made redundant by the short circuits. 
These effects could, of course, be combined to give a single 
multiport transformer. 

Step 3: This step begins with two coordinate-basis 
changes, which as discussed previously do not affect the 
external behavior of the network. With the obvious parti- 
tioning of x, U, and v, the state equations are then 

H,,‘(t) Hn’(t) XI 
H,,‘(t)] [xJ + pit) 

with Hz2(t) nonnegative definite symmetric for all t. 

U1 U2 
0-Y 0 
+ f 

Vl VP 
0 0 

Fig. 5. Reactance extraction at ports. (r7”” and cZ are represented by 
iZ and & in text.) 

Now let H,,(t) be factored as S(t)S’(t), and define the 
following sequence of transformations : 

i) c2 = S’u2 and v2 = Sii, 
ii) ii2 = i?? .L and c2 = c2 - v2 

iii) 0, = Sii2 and i2 = S’fi, 
iv) BZ = ul and ii2 = ul. 

Transformations i) and iii) represent transformers of turns 
ratio S’(t) and S(t), respectively, while iv) is a simple re- 
numbering of the ports. The second transformation repre- 
sents the insertion of 1-F shunt capacitors. At the same 
time, the roles of u and u have been exchanged: G2 is a 
vector of voltages, and ii2 a vector of currents. In effect, 
the “x2” part of the network has been inverted, which 
allows the extraction of a shunt capacitor. The resulting 
network is shown in Fig. 5. 

To find the state equations of the remainder of the net- 
work @ in Fig. 5), recall that H22(t) is nonsingular. Then 
it is readily shown that G1 = x2, and thence that 

f, = Ex, + efi 

0, = z?‘Xl + 36 
where 

6’ e [q C2’] 0’ = p, O,‘] 
and 

fl = IIf’,, 

G = CF12 G,,l 

fi = [--Fn’H22 HII] 

3= 

-sS’ + H22’F22 - H,,‘G,, 
H21’ 1 Jo 

After setting R = 3 + I’, these definitions agree with 
those of Section III. 

The matrices E, G, 8, and 3 now define state-space 
equations of a hybrid matrix, which in general will not be 
the same as an impedance or admittance matrix. Accord- 
ingly, further cycles of the synthesis procedure involve 
interpretations different in detail to those given previously. 
We shall not pursue this point further here. 

=VI. CONCLUSIONS 

The primary aim of this paper has been to derive syn- 
thesis techniques for a certain class of time-varying im- 
pedance matrices; two such methods have been described, 
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in Sections IV and V. However, one also gains considerable 
insight into the structure of the class of matrices P(t) that 
appear in the necessary and sufficient conditions of Section 
II. In general, there will be a number of such matrices, but 
an important point established in Section III is that-in an 
appropriate coordinate basis-one can identify certain sub- 
matrices of any and all matrices P(t) satisfying the necessary 
(and, of course, the sufficient) conditions. In other words, 
the set of all solutions P(t) lies in a linear manifold. This 
property only holds, of course, for what we have termed 
the “singular” problem. 

It is of some interest to examine the significance of the 
constancy of rank assumptions of Section III. An examina- 
tion of those parts of the algorithm depending on them 
shows that the assumptions are, in fact, sufficient conditions 
for existence of matrices P(t) satisfying both the necessary 
conditions and also the slightly weaker sufficiency condi- 
tions for passivity. Equivalently, the assumptions imply 
that there exists at least one P(t), satisfying the Stieltjes 
integral inequality (14), that is also differentiable. Whether 
these assumptions are also necessary for this to occur is 
still an open question. A further open question is whether 
the algorithm could be made to work if the constancy of 
rank assumptions failed to hold. It would appear that one 
could break up the time interval under consideration into a 
number of subintervals in which the assumptions did hold, 
and apply the algorithm in each of these time intervals 
separately; the final result should be a piecewise continuous 
P(t). Corresponding to each rank change there would be a 
finite discontinuity in P(t), which would in turn correspond 
to a structural change (for example, the switching in of a 
new capacitor) in the final synthesis. The major difficulty 
in this approach is, of course, the matching of boundary 
conditions at times where jumps in P(t) occur. 

It is important to appreciate that such discontinuous 
solutions may also occur even when the assumptions of this 
paper are in force. In practice, however, one tends to ignore 
these solutions on the grounds that the resulting synthesis 
would be unworkable, both computationally and in terms 
of actual construction (this should be clear from Section 
IV). On the other hand, all continuous solutions P(t) are 
realistic candidates for use in the procedures outlined or 
referenced in Section IV. Since it has been shown that the 
restrictions imposed on P(t) actually apply to all possible 
solutions, it follows that the algorithm is actually capable 
of generating all solutions-none have been discarded at 
any step of the procedure. This is important in a practical 
sense, at least for time-invariant problems, for one would 
actually choose different solutions P(t) depending on 
whether one is interested in, for example, a reciprocal 
synthesis or one using the minimum possible number of 
resistors. 

u(t) = r(t)u(t) u(t) = $ (c’(t)u(t)) 40 = $ tww 

Passivity is guaranteed by r(t) 1 0; c(t) 1 0, i(t) r 0; 
I(f) 2 0, f(t) 2 0. 

In terms of primary and secondary port voltage vectors 
q(t) and v2(t) and associated port current vectors, define 
the time-variable transformer by q(t) = T’(t)u,(t), u2(t) = 
-T(t)u,(t), the turns-ratio matrix being T(t). The time- 
variable transformer is lossless. 

The time-varying gyrator is a two-port device defined as 
the obvious generalization of the time-invariant gyrator: 
ul(t) = y(t)i,(t), u2(t) = -y(t)il(t). It is lossless. 

APPENDIX 11 

PROOF OF LEMMA 1 

We first show that N = 1. Suppose the contrary, and 
choose 

u(t) = l(t - to) + c (? - bJN-l l(t - ta) 
(N - l)! 

p 

where t, and t,, > t, are arbitrary, c is an arbitrary con- 
stant, and /? an arbitrary vector. This yields 

+ (terms independent of c) 

for all N > 1 (but not actually for N = 1). Hence ZN(t) 
must be skew for all t if (6) always holds. Now take a new 
24(e) as 

ul(t) = 0, I # kj. 

This yields 

E(ta,tb + s"(')) = - c(zN)jk(tb) "ii "I;r ' 
- . 

+ (terms independent of c). 
It follows that ZN(t) s 0. 

Now consider Z,(t). Take u(t) = (t - tJl(t - t&? for 
arbitrary B and t.. For t - t, small, t 2 t,, we obtain 

E(ta,t,4~)) = WZ,tt>Btt - ta)’ 
+ [terms of higher order in (t - ta)] 

which shows that Z,(t) + Z,‘(t) 2 0. To show that Z,(t) 
is symmetric, take 

APPENDIX 1 

DEFINITIONS OF TIME-VARIABLE COMPONENTS 
z&C?) = (t - t,)l(t - t,) 

Uj(t) = sin CO(t - t,)UJt) 
With u(t) and u(t) denoting voltage and current, respec- 

tively, define the linear time-varying resistor, capacitor, and w = 0, I # k,j. 
inductor by For t - ta and o(t - t,,) small, we obtain 
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W,,Wt~)) = 3[Gk(kJ + zjj(to) sin2 4 - b) ACKNOWLEDGMENT 

+ (Zij(t,, + Zjk(Zo)) sin CD(t - t,)](t - t,)2 The authors wish to thank J. B. Moore and L. M. 
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+ 3 (z&J - Zjk(fa)) cos w(t - t,)(t - tJ3 ideas Of this paper* 
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