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Abstract—For a given nonstationary matrix covariance with a
finite-dimensionality property that is the time-varying generalization
of the rational power spectrum matrix property, we show how to
find a linear finite-dimensional system driven by white noise with
output covariance equal to the prescribed covariance.

I. INTRODUCTION

HE covariance factorization problem, or time-varying

spectral factorization problem, can be stated as
follows. Suppose there is given a covariance ®(-,-) de-
fined and positive definite in a certain region, say [0, ;] X
[0, &1]. What linear system, with white noise input, has an
output with covariance ®(-,-)?

In this paper, we consider the finite-dimensional version
of this problem, we allow ®(-,-) to be a matrix, and we
allow ®(-,-) to be nonstationary.

The history of such problems is interesting. For sta-
tionary wmatrix &(-,-), frequency domain procedures
based on factorization of the power spectrum matrix have
been available for some time, see e.g., [1]-]4]. State-space
viewpoints of the finite-dimensional stationary problem,
of a nature allowing possible modification for the nonsta-
tionary case, are discussed in [5]-[7]; these viewpoints
make use, at least indirectly, of the positive real lemma,
enunciated in its original form by Kalman [8] and Yaku-
bovic [9].

When one moves to consider the time-varying case, it
soon becomes clear that the factorization problem is much
easler for nonsingular covariances (those comprising a
sum of a nonsingular white noise component and a con-
tinuous process component) than for singular covariances
(those without the nonsingular white noise component).
(The terminology nonsingular/singular is drawn from dual
control problems, incidentally.)

For the infinite-dimensional case, Gohberg and Krein
have solved the nonsingular problem, [10]; their solution
is based upon solving an infinite number of Fredholm
equations. In the finite-dimensional case, an approach
based on use of the Riceati equation was suggested in
[11] and developed in more polished form in [12] and
[13]. Results tving together the material of [11]-[13]
with the Fredholm equation approach and the Wicener—
Hopf equation appear in [14] and [15]. Refercnee [15a] is
also relevant.
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In the nonsingular problem, there is no essential differ-
ence in dealing with matrix ®&(-,-) and scalar &(-,-).
This is, however, not so for the singular problem, and
earlier results have been confined to scalar ®(-,-) (al-
though, actually, a limited class of matrix ®&(-,-) can be
treated by a trivial extension). Results for scalar ®&(-,-)
were again suggested in [11], and these were extended in a
1968 technical report subsequently appearing as [16].
In June 1968, there also appeared the thesis of Branden-
burg [17] containing many similar ideas, and in Deecember
1968 the thesis of Geesey [14). Much of [17] was subse-
quently reported in the literature [18], but unfortunately
[18] does not cover one of the most interesting ideas of
[17], to the effect that a singular factorization problem of
given (state-space) dimension, can be reduced to a non-
singular problem of lower dimensions than the original.
(Solution of the singular problem via transformation to a
nonsingular problem was initiated in [11]; it is the di-
mensionality reduction of [17] which is the interesting and
novel idea.) This idea is also developed in {14], which
considers too at length the inveriibility of the system solv-
ing the speetral factorization problem. For the nonsingular
case, the invertibility problem is easily settled, sce [13]
and [19], but Kailath and Geesey were the first to ex-
plicitly seek such solutions (innovations representations),
and to note that some of the systems solving the singular
problem in [16] and [17] were in fact invertible.

Other work on the time-varyving problem can be found
in [20] and [21], approaching the problem, respectively,
as one requiring factorization of differential operators, and
one requiring solution of a nonlinear integral equation.

As noted earlier, in this paper we consider the nonsta-
tionary finite-dimensional matrix problem. We also allow
®(-,-) to be singular.

Our method of approach differs from any employed in
treatments to this point of the scalar problem. However,
we do make usc of the notion of reducing the state-space
dimension where possible, though not in the same way as
Brandenburg [17]. In general terms, we relate the problem
for a singular r X r covariance with associated state-space
dimension n to the problem for an associated 7 X #/, not
necessarily nonsingular, covariance with associated state-
space dimension #’. One has v < », 7/ < n, with of least
one inequality holding, and one can continue a series of
such dimension reductions until either a nonsingular (and
thus solvable) problem is encountered, or a dimension
shrinks to zero, leaving a trivial problem. The dimension-
ality reduction is ecritical, since without it there is no
guarantee that the algorithm will terminate. (Note that
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in contrast to [17], one does not delay the implementation
of a dimensionality reduction until a nonsingular problem
is encountered.) A further property of the procedure is
that it is straightforward to obtain an invertible system as
the solution of the factorization problem.

If one attempts to apply the scalar singular procedure
of [16] in the matrix case, one encounters a difficulty as
soon as different numbers of differentiations of the various
components of the vector process are required to produce
white noise. One can seek to take this into account with
the procedures employed by Bryson and Johansen [22]
in their study of Kalman filtering problems, but one en-
counters still a further difficulty: it may be that it is never
possible to obtain a nonsingular problem via differenti-
ation, nor at the same time a totally singular problem.!
Indeed, one has a new class of problems, termed in the
control literature partially singular, which does not
appear in the scalar case. Nevertheless, unpublished work
of Silverman and Anderson, and a thesis of Powell [34],
achieves a solution this way, and Moore has indicated in a
private communication how substantial simplification
can be made using the ideas of Goh |23], [24] developed
for singular control problems. The method of this paper
however seems to be simpler.

In developing the ideas of this paper, we have benefited
substantially from a survey of linear-quadratic variational
problems, see [25]. Combining the ideas of [25] with some
of this paper, we have discovered new control results (and
network theory results) which we shall report separately.

The plan of the paper is as follows. In Section II, we
give a precise formulation of the problem, and note the
two key alternative assumptions under which a solution
may be obtained. In Sections III and IV using each
assumption in turn, we solve the problem. Section V
contains some remarks on the stationary problem, and
Section VI contains concluding remarks.

II. ForRMULATION OF THE PROBLEM

Suppose there 1s given a two-variable function ®(-,-)
defined on [0,&;] X [0,#], which can be written in the
form

R, ) = R@®s@t — v) + H ()@@, nK{(+)1(t — 7)
+ K'O®' (r,) H(n)1(r — t). (1)

Here, 8(-) and 1(-) denote the delta function and unit
step function, respectively, @(-,-) is the n X »n transition
matrix assoeciated with some equation £ = F(f)z, and the
superscript prime denotes matrix {fransposition. The
matrices H(-) and K(-) are n X r, B(-) is r X r, and
F(), H(-), K(+), and R(-) are all assumed to have entries
differentiable as many times as are required in the algo-
rithms to follow.

The covariance of the output of any linear finite-

1 For example, the given covariance matrix could be the direct
sum of a nonsingular covariance and a covariance of the type

;’-\i__ 1 ¢:(t)epi(s) for smooth (- ).
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dimensional system excited by white noise will have the
form (1). It is well known that the covariance has a non-
negativity property, viz.,

1 21
f f w' (O)RE,)u(r) didr > 0 for all continuous u(-).
0 ]

We shall say that a system realizing ®(-,-) is a system
such that when driven by white noise and with an appro-
priate random initial condition, the output covariance
over [0,t;] is ®(-,-). It therefore clearly makes sense,
given an ®(-,-) of the form of (1) and with the nonnega-
tivity property, to search for a system realizing ®(-,-).

In searching for a system realizing ®(-,-), it is con-
venient to restrict a search for such systems to ones with
an impulse response J()8(t¢ — 7) + H'(Q)®{¢,7)G(7)1{¢ —
7}, so that it is the matrices G(-) and J(-), together with
the system initial condition, which define the system. The
state-space equations of such a system are & = F(t)z -+
GOu, y = H'({O)x + J H)u, and u(-) is assumed to be unit
intensity white noise, i.e., E[u(®)u'(v)] = Is(t — 7). The
initial condition on the system is a random one, requiring
Elz(0)x'(0)] = P, for some nonnegative definite sym-
metric Py, and z(0) is independent of u(-). In order that
such a system realize ®(-,-), it is necessary and sufficient
[13] that the following equations be satisfied on [0,i]
for some nonnegative definite symmetric P(z):

P = PF' + FP + GG&' PO) = P
PH =K - GJ’
JJ'=R. . (2)

The matrix P(f) is actually Ex@)z’ (@) ].

If the system is known, but the covariance (1) is not, the
latter may easily be computed using (2). However, if the
covariance is known in the sense that F, H, K, and R are
given, the converse problem of finding the system, or
finding Py, G(-), and J(-) such that (2) holds, is harder;
the paper addresses precisely this converse problem.

To solve the converse problem, there are two classes of
assumptions we can make. First, we can assume the
existence of Py = Py’ > 0, G(+); and J(-) satisfying (2)
for the preseribed F, H, K, and J(-) without assuming
that we know the particular values. Then we can attempt
to compute the values of Py, G(-), and J(-), or indeed
any other triple satisfying (2), i.e., we start with the fol-
lowing assumption.

Assumption 1: There exists a system defined by matrices
F(), G(+), H(-), J(+), and P,, with the actual values of
G(+), J(-), and P; unknown, which realizes the covariance
1).

This approach is followed in Section III. Clearly, it is
to an extent unsatisfactory, since it leaves unanswered
the question of what properties of the covariance alone
imply existence of a system realizing the covariance. Now
it turns out that mere nonnegativity in the earlier de-
seribed sense of a two-variable & (¢,7) of the form (1) is not
quite adequate to guarantee this existence. Besides
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various technical assumptions detailed as the need arises,
the following assumption is also required.

Assumption 2: ®(-,-) has the following extendability
property: if 6Gi(-,-) possesses the nonnegativity property on
. [0,t1], then there exist definitions of F(-), H(-), K(-), and

®R(-) on (ti,t; + €], for some ¢ > 0, such that R(-,-)
possesses the nonnegativity property on [0, 4+ €] and
such that f:i+5 &' (r,tl)H(r)H' (1)®(r, &) dr is non-
singular.

Note that this assumption is one on the covariance
alone; note also that it will necessarily be satisfied by any
covariance defined on [0,f;] which has a system realizing
it on [0,i;]—for any definition for the system of F(:),
G(-), H(-), and J(-) on (f1,ti + €] preserving continuity
and such that the nonsingularity of the observability
integral is fulfilled will define an extension for the covari-
ance, in which K(-) and R(-) on (¢1,t1 + €] are computed
via (2). For these reasons, the assumption is well justified.

A realization procedure based on this assumption is
presented in Section 1V. The computations are almost
identical with those of Section III. The justification of
the computational procedure is however more complex,
and herein is the reason for first giving the procedure of
Section III.

As noted in the introduction, in the nonsingular case,
one can fairly easily solve the nonsingular problem. One
proceeds as follows. Define a matrix IT1,(-) by

I, = O,F’ + FIL, + (I.H — K)R-(L,H — K)'
,0) = 0. (3)

Then the identifications G = (K — IL,H)R * and J =
R} ensure satisfaction of (2) with P(f) = II,(f); in par-
ticular, Py = 0.

The technical question arises of ensuring that (3) has
no escape time, i.e., ensuring that IL,{f) exists on [0,#].
This is guaranteed either by Assumptions 1 or 2. In case
Assumption 2 holds, one can show, as in Appendix I,
that I1,,(¢) is bounded above and below for all ¢ & [0,4].
This eliminates the possibility of an escape time. In case
Assumption 2 holds, it follows, see Appendix II, that
®(-,-) is positive definite on {0,4], i.e., that

Llﬁtlu'@)@x(tﬂ)u(f) didr > nj;lu'(t)u(t) i @)

for some 4 > 0 and all «(:); this condition guarantees
existence of I1,,(-) by a theorem of [35], modulo a straight-
forward time reversal. For completeness, a proof is also
contained in Appendix 11.

Notice that the equivalence of Assumption 2 and the
positive definite property is valid only for nonsingular
R(t); attempts to tackle singular realization problems via
imposition of a positive definite property on ®(-,-) (as
opposed to a nonsingular covariance possibly derived in
the course of solving the realization problem) are in-
trinsically attempts at solving too restrictive a problem.
Put another way, Assumption 2 rather than positive
definiteness (or even a demand that f& f§ w'()®@,r)
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u(7) didr > 0 for all continuous «(-) not identically zero)
is the most natural condition encompassing nonsingular
and singular problems.

In case R is singular, the approach based on (3) fails,
and the realization problem is much harder. For zero R,
it can sometimes be the case that application of the scalar
covariance procedures of [16] will solve the problem.
(This view is espoused in [26].) Our solution procedure
makes no such assumption.

Another solution procedure solving the same problem
has come to our notice since preparation of the first draft
of this paper, [34]. In order to compare the two pro-
cedures, we shall defer comment on [34] until the details
of our procedure have been described in the next two
sections.

In preparation for the next two sections, we now note
the following points.

1) We shall have occasion to change the state-space
coordinate basis; this of course has no effect on the given
covariance, so that the essence of the spectral factorization
problem is unchanged.

2) We shall have occasion to transform the vector
process y(t) of covariance ®(-,-). Thus if S(f) is a non-
singular » X r matrix of continuous entries, 7(f) = S@)y(¥)
has covariance G(@,7) = SEGE7)S'(r). Again, the
essence of the problem is unchanged.

3) Our solutions to the realization problem will
actually demand further assumptions than Assumptions 1
or 2; these extra assumptions are ones requiring differ-
entiability of the entries and constaney of the rank of
various matrices, and, physically, seem to amount to
disallowing structural changes in the system realizing
®(+,-). The differentiability and constancy of rank
assumptions will be explicitly listed as assumptions when
they are needed.

I11. ReanizaTioNn GiveN MopeL EXISTENCE

We start with (1) and the assumption that there exists
some G(-), J(-) and Py (and therefore P(t)) such that (2)
holds. What these latter mairices actually are is unknown;
in fact, we do not even know the number of columns of G
and J. For convenience, let us rewrite this assumption as:
there exists a nonnegative definite symmetric P(f) defined
on {0,] such that

P —-PF—FP PH-—K
H'P - K' R

(Observe that (5) implies the existence of G(-) and J(*)
satisfving (2) and conversely.)

Let us adopt the convention that P(-) will denote the
matirix whose existence is abstractly known but whose
value is not known, and II(-) will denote a nonnegative
definite matrix whose value we shall find, and which
satisfies (5) with P(-) replaced by II(-). Then finding a
nonnegative TI(-) satisfving (3) is equivalent to solving
the realization problem of finding G(-), J(-), and a P,
satisfying (2), [compare (2) and (5)].

As noted in the previous section, with () nonsingular,

M(P) = [ :| >0. G
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the problem of finding a II(-} is easijy solved. Define
I.(-) by (3), and, as shown in Appendix I, there is no
escape time; one easily checks that M (II,) > 0. Further,
as noted in Appendix I, the II,,(-) defined by (3) is mini-
mum amongst all matrices IN(-) for which II() = II'() >
0, i.e., IL,(¢) < I(#) for all £ and all TI(-).

To tackle the case of singular R(t), we shall apply one
or both of two sorts of reduction steps to M (P). One step
involves reduction of the dimension r or E(f) and is
effected with the aid of output transformations. The
second step involves reduction of the dimension n of F(-).
Application of these reduction procedures leads ultimately
to either a problem with output dimension of 0 (i.e., no
process remains to be realized), a problem with state
dimension of zero (the process has no dynamics), or a
problem with nonsingular R matrix (then a known pro-
cedure applies). A flow diagram summarizing the whole
procedure is given in Fig. 1, and can be examined in
conjunctioh with the detailed deseription of the procedure.

Step 1—(Output Transformation): Make the following
assumption.

Assumption 3: The entries of E(-) are continuously
differentiable & times, for some & > 1, and R(f) has con-
stant rank p on [0,4].

Then there exists a nonsingular S with entries & times
continuously differentiable such that

5 B 0
R = SRS = [-0 :l 6
0 0p1Xp1 ( )

with Ry a nonsingular matrix (here, py = » — p). Set 4 =
HS’ and K = K§'. [To see that S{-) exists, notice that
by the Lagrange method [27] we can write R(t) = V()
V() with V() square, of rank p, arid with entries % times
continuously differentiable. Then by Dolezal’s theorem,
[36], there exists a nonsingular 8’(¢), with entries k times
continuously differentiable, such that V/()8'(®) = [V ()
0] for V,/(¢) with p columns. Then set Ro(t) = Vi@V @).]

The physieal interpretation of the transformation is as
described near the end of the last section; in lieu of ex-
amining a process ¥(t) of covariance R(¢,v), we examine a
process 5(f) = SEy(E) of covdriance SEORE,T)S(7).
The last p; entries of §(f) do not contain a nonsingular
white noise component.

Now drop the superscript hat.

Step Z—(Further Output Transformation and Ouiput
Dimension Reduction): Partition H{t) as [Hi(@) H:@)],
with H,({) of dimension n X p,. Make the following
assumption.

Assumption 4: Hy(t) has constant rank p < p; on [0,4,]:
If p = pi, pass to Step 3. Otherwise, let S;(f) be a non-
singular p1 X p1 matrix with entries as differentiable as
the entries of H»(¢) and such that H.(0)S’() = [Ha(t) 0],
with Hs(t) having p columns. (Note that Dolezal’s theorem
guarantees that Sp(t) exists.) Set S(t) = I @ So(t) with
the unit matrix of dimension (* — p,), and define R(t) =
SWR®S' (1), HE) = HEOS'®), K@) = K@©S'(). This
vields, dropping the superscript hat again,
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ro = [%O O ] HO = 0 B0 O]
K@) = [Ki(t) K.(t) K@)

Here, K (¢) is partitioned like f(f). Now observe that (5)
forces Ki(f) = 0. (Any vector whose entries are 0 except
for the last (p — p1) is in the nullspace of E(t), and so for
(5) to hold must be in the nullspace of PH — K. It is in
the nullspace of H, and so must be in the nullspace of K.)
This conclusion of course uses the fact that P(f) exists,
but does not use its value, which anyway is unknown.

The physical interpretation is that there is an output
transformation whose effect is restricted to those com-
ponents of the process not containing a white noise com-
ponent. After the transformation, the last (p; — p) entries
of the vector process of covariance ®(-,-) are zero almost
everywhere, and, accordingly may be dropped from
consideration.

Now define

A

k= [Ro 0 jl H= [H, H,] K= [K: Kil. (7)
0 Oy

Also define the matrix M in an obvious fashion. The same

P that guarantees (5) will guarantee M(P) > 0. Further, if

we demonstrate the existence of and compute a II such

that M) > 0, then M (1) > 0.

If now p = 0, realization is immediate because R, is
nonsingular, and if not, we proceed to Step 3, bearing in
mind that H.(f) has rank p. Drop the superscript hat
again, and redefirie 7 to be the new dimension of R.

Step 3—(State-Space Coordinaie Basis Changes and
State-Space Dimension Reduction): Select a coordinate
basis change matrix T'(¢), nonsingular and with entries as
differentiable as those of H,(Z), such that

v _ pnvgr _ |Hu O ]

H= (T"YH I: Hy Ipe 8)
(Again, we appeal to Dolezal’s theorem.) Also define F =
TFT-' + TT-\, K = TK, = (T~')’H. The matrix P
(and II) trabsforms according to P = TPT’ and then
MP) = (T @LYMP)T' @1,) > 0. (Notice that for F
to have entries which are k times continuously differenti-
able, T must have entries which are (¢ + 1) times con-
tinuously differentiable, because T ocecurs in the formula
for £.) Now drop the superscript hats.

Partition P as
P 11 P 12}
P = 9
l: P12/ Pzz ( )

(a_nd II similarly), with Py, of dimension (n — p) X (n —
p) and P of dimension p X p, and partition K similarly
to H. The last p columns of PH — K must be zero, which

means that
Pe| [Kp|_
[Pzz] [Kzz:l =0

Till this point, the actual value of P(t) has been unknown.
However, this equation identifies the matrices Pi, and Py,

(10)
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associated with any and every system realizing ®(-,-);
in particular then, we must have also ITj; = Kj; and Il =
Ko, with Ky symmetric and nonnegative definite because
I and P have this property. We must still find ITy; (¢), and
we have the knowledge that some Py (i) exists for which
M(P) > 0.

It may be the case that the various dimensions arising
in Step 2 lead to H:(¢) having no columns, and accordingly
P11 and Pi» evanesce. In this ease, the realization pro-
cedure terminates because all entries of P and II are
identified. Suppose therefore this is not so.

Now because P(t) > 0 for all ¢, it must be the case that
Ky(t)a = 0 for some ¢ and « implies Kp()e = 0, and so
Ki'() = Kup()Ka'({t)Ky' (). Here, the superscript # de-
notes the pseudoinverse. Now (in order to block-diago-
nalize P(¢) and 1 (¢)) define a further coordinate basis change
matrix

I —Kn(t)Kn? (t)]. (11)

T® = [0 I

Obviously, T(¢) is nonsingular; to ensure that it has
" entries inheriting the differentiability of Ku(:) and Ka(-),
we assume the following.

Assumption 6: The matrix K»(f) has constant rank on
[0,T].
(This assumption ensures that entries of Kuf(f) inherit
the differentiability of entries of K(2).)

Nowset F = TFT-' + TT-, K = TK,H = (T-)'H,
P = TPT’ and Il = THT". In particular,

s | Ku(®) 0 1 . |:I'{11 O—J
K_[KZI(’:) K22(t)J H = Hy T

Pu 0
I: 0 szjl (12)
with Py = Py — P12P22#P12I for example. (In computing
P, (10) is used.) Likewise, II is IIy; @ K. Drop the super-
seript hats again, and consider the inequality 3/ (P) > 0,
recalling that P2 = K and Pop = Ko

2 _PllF‘Zl, - F12K22

Pll_’PllFlll_FllPll .
—F21P11 - K22F12’ K22 - KZZF"Z‘ZI - F?.ZKZZ

P =

M(P) =

P) Hu'Pn — Kn' Hy'Kop — Ky’
0 0

Make the following definitions:

p=P1] F=F11 ﬁ:' [_FZII Hll]

K = [FuKs Kul

5 Ko ~ KnFa' — FyKsy KoHs — Kﬂ}
R = . )
[ Hu'Ky — Kot/ R (14)

Then M (P) is precisely the top left part of I (P) which is
not identically 0. Obviously, M (P) > 0 is equivalent to
M(P) > 0, every part of £, H, K, and R is known, and
Py is unknown, although the fact of its existence is known.
The search for a II satisfying 4/ (IT) > 0 is equivalent to
the search for a IT such that (1) > 0.

The crucial point is the reduction in the effective state-
space dimension achieved at this point. If R is non-
singular, II can be obtained immediately. If not, then the
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stage is set for further application(s) of Steps 1-3, and,
provided that the assumptions corresponding to Assump-
tions 3-5 are satisfied, one is guaranteed that the process
must end in one of three ways. Either one is left with a
process of zero dimension to realize, or a process with no
dynamics, or a process with nonsingular R. In each case,
determination of II and thus realization is immediate.

Here are some other points.

1) Suppose one is after the minimum I, eall it IT,,, for
which the original /(1) in (5) is nonnegative definite.
(That there is a minimum for the singular problem is not
at once obvious. However if the realization algorithm goes
through, we can construct IL,, as explained below.) In
case R(1) i1s nonsingular for all {, Lemma 1 gives IL,(i).
Otherwise, because the various reductions of Steps 1-3
preserve the ordering of II matrices, in the sense that if
() and IIx(-) are two solutions of A/ (II) > O and if
Mi(+) and IIo(-) are the corresponding solutions of M (IT) >
0 derived after application of one or a number of Steps 1-3,
then II,(#) > II() if and only if (f) > IIL(®). (This is
easily seen, for the only transformations of the IT are
congruency transformations.) Consequently, if successive
applications of Steps 1-3 lead to a nonsingular situation,
for which a minimum II,,({) can be computed, this re-
fleets back to a minimum IT,,(¢) for the original inequality
M(IT) > 0. If successive applications of Steps 1-3 do not
lead to a nonsingular situation, but do lead to a realization,
it must be the case that all of the matrix II of any realiza-
tion is uniquely identified, i.e., I, (¢) = II(¢) for all realiza-
tions. A realization associated with minimum II(-) has,
as we shall see, an invertibility property. This is known
for the nonsingular.case; see [14], [15], [38], and [31] for
results connecting minimality and invertibility properties.
The fact that II,,(f) defined in (3) defines, for the non-
singular case, an invertible realization first appeared in
[19], see also [12] and [13].

2) Suppose ®R(-,-) is singular, and define II, by (3)
with R replaced by R + €I for ¢ > 0. If P satisfies (5),
then P also satisfies

P11H1] - K]l 0
KypHn — Kn 0O
py o1 0 (13)
0 0
[P -PF—FP PH-K
Mf(P)_[ H'P — K’ R+JJZO

and then the argument of Appendix I vields 0 < II,(¢) <
P(@). An analysis of the differential equation for II, will
show that II, increases as ¢ — 0. In view of the upper
bound P(tf) on II(f), it is clear that lin}) () = 1)

exists, with L) < P(¢). Now for each ¢ > 0, M (II,) > 0;
one cannot necessarily take the limit to conclude that
M) > 0 for II(-) is not guaranteed differcntiable.
However, the Helly convergence theorem [37] does
guarantee that

dff — (TF" + FT)dt
(TH — K)'dt

dN{I) = [

(MH — K)dt .
Rdt ] (15)
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is a Stieltjes measure with the nonnegativity property

& w' (AN (IDw() > 0 for all continuous (). The three
steps of the algorithm just presented can all be applied
to the measure, and in the event that the various con-
staney of rank and differentiability assumptions are valid,
one can identify II(¢) as IL,(t). Therefore, the same con-
staney of rank and differentiability assumptions which
enable the algorithm to be carried through will also
guarantee that when II(-) is formed by the above pro-
cedure it will be differentiable and, accordingly, vield a
solution of the realization problem. The limiting procedure
from the computational point of view is not attractive.

3) As noted in [25], (5) when associated with the co-
variance property becomes a time-varyving analog of the
Kalman—Yakubovic equations [8],{9]. As such, it can be
applied to problems such as network synthesis, see e.g.,
[29], where, incidentally, nonsingularity of II(-) becomes
important. More importantly though, we note that with
obvious changes, the material of this section applies to
the problem of realizing a stationary covariance, with
constant ¥, H, K, and R, via a time-invariant system.
The various state-space and output transformations all
become time-invariant, and II becomes zero. It is known
that the time-invariant problem with nonsingular R is
much easier to solve, see [5], [30], and the material here
provides a systematic way of reducing a singular problem
to a nonsingular problem.

4) Treatments of the scalar covariance singular prob-
lem due to Brandenburg [17], and subsequently Geesey
[14] have relied on converting the singular problem to a
nonsingular problem of the same state-space dimension,
as in [16], but then showing that the Riccati equation
associated with the nonsingular problem could be replaced
by a Riceati equation of lower dimension. In essence, the
method here carries out this sort of reduction at each step
(rather than waiting until a2 nonsingular problem is en-
countered), and, moreover, separates this reduection from
any requirement of nonsingularity. Also, it is this reduetion
at each step which guarantees termination of the algo-
rithm; earlier scalar singular results needed a separate
proof of termination.

A generalization of the approach of [14],[161,{17] to the
scalar problem has been developed in the thesis of Powell
[34] for the matrix covariance singular problem, and it is
worthwhile to note some similarities and differences be-
tween Powell’s and our methods. The more important
ones seem to be as follows.

a) In both methods, an assumption that there exists
some svstem realizing the prescribed covariance, coupled
with differentiability and constancy of rank assumptions,
will allow the algorithms to be carried out. On the other
hand, Powell does not use our Assumption 2 (our extend-
ability property for the original covariance). Rather, he
demands positive definiteness of a nonsingular covariance
derived in the course of the algorithm.

b) Powell’s algorithm contains a sequence of output
transformations and differentiations interlaced; ours inter-
laces output transformations and state transformations
(which involve differentiability of the coordinate basis
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change matrix, and to this extent involve differentiations).
Both procedures require various constancy of rank and
differentiability assumptions, but sinece the procedures
diverge after the first step, it is hard to see whether the
assumptions are equivalent.

¢) In Powell’s procedure, there iz no reduction of the
size of the TI matrix of interest as one proceeds through
the algorithm, though as a final step, one can achieve a
reduction. Our method may involve a sequence of reduc-
tions through the course of the algorithm.

d) As shown in the next section, our method always
allows the construction of an invertible system realizing a
prescribed covariance, with the inverse actually comput-
able in the course of the algorithm. Powell’s method does
not always lead to an inverse svstem, although it appears
that this is due to a failure of the inversion algorithm
rather than the derivation of a noninvertible realization.
(In this connection, it should be noted that Powell’s
definition of invertibility is slightly different from ours.)

When our algorithm is specialized to the sealar co-
variance case, it is the issue raised in b) above which
again tends to distinguish it from the algorithm of [16].

5) Suppose one knows a system (2) which realizes a
certain covariance, and suppose one wants a system
associated with IL,(f) realizing the same ecovariance.
(Such a system, as we shall see, has an invertibility
property.) This problem can be simply formulated as
follows; one seeks the minimum nonnegative definite II
such that

O — IIF — Fl
JJ’

IH — (PH + GJ') >0
HU - (HP + JG) =
or, equivalently, with Z = T — P < 0, one seeks the
minimum Z for which
Z—ZF —FZ + GG ZH — GJ"] o
HZ — JG' JJ’ =
6) It is clear from the algorithm given that all solu-
tions II(-) satisfying the original /(1) > 0 of (5) are
uniguely determined up to that part satisfying a condition
17(0) involving a nonsingular B:
s I - 0F —Ffi1 17 - K
k 1 = . o~ N “ >
M) [ O — B P :\_ 0.
We have recalled that the minimum II(-) satisfying this
inequality is given by (3), and the question aArisos of Awhat-
other TI(-) satisfy the inequality. Set Q(t) = TI(t) — IL,(¢).
Then one can show that 77(I1) > 0 is equivalent to

Q — QF — FQ — QAR-'A'Q > 0 (16)
where F = F + (fl.inH — K)R'H'.

Steady-state versions of (16) are studied in {7]. {30],
where all possible @ are characterized. It would take us too
far afield to provide the time-varving generalizations,
some of which are straightforward to obtain. (The general
idea is that (16), through not having a constant term, is
feasible to deal with. For example, if @ is invertible, (16)
yields a linear differential inequality in @)
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7) Let us note that a sufficient condition guaranteeing
that I(¢') is positive definite for some fixed £’, where TI(-)
satisfies (5), is precisely the complete controllability
condition

fy &, )K()K'(s)®'(t',s) ds > 0.
0

(Nonsingularity of II(-) can be important in applications,
see e.g., [29].) To see this, first simplify the problem by
selecting a coordinate basis in which F == 0. Then suppose
II({)a = 0 for some o. Because M(II) > 0, 11 > 0 and so
e =0for0 <t <¢. ThenU{f)a = 0for0 <t < ¢/
and so, again since M(II) > 0, «’'[H{OH{) — K@) =
—a’K(f) = 0for 0 < ¢t < #'. This means the controllability
condition fails.

IV. REALIZATION (GIVEN THE EXTENDABILITY PROPERTY

We start with (1) and Assumption 2. In very broad
terms, the strategy is still the same, i.e., we carry out
output transformations that may reduce the dimension of
the process whose covariance is to be realized, and state-
space coordinate basis transformations which allow re-
duction of the “degree” (dimension of ®(:,-) matrix) of
the eovariance to be realized. These latter transformations
are such that if the lower degree covariance is realizable,
the higher degree one is realizable.

In case E(t) is nonsingular, realization follows with the
aid of ,(#) defined by (3), as earlier explained. So we
concentrate on singular £(-). As before, we shall have the

various constancy of rank assumptions, and we shall
actually compute the same matriz T(-) solving the realiza-
tion problem. However, the exisience argument, or the
validation of the computation procedure, zs different.

The procedure is as follows.

Step 1: This is identical with that of the last section.
Assumption 3 is used again.

Step 2: This is identical up to the point where we have

TR@ 07 HO = ) H) Owmnm]
EQ) ‘[ 0 ] KO = Ki) Kol) Ko@)

with H(t) of rank p and of p columns. (Note that Assump-
tion 4 is used again.) We need to conclude that we can set
Ki(f) = 0. Let y@®) = [1n'®) v’ ® %' ()]’ be the process
with covariance ®(¢,7), partitioned as H(-). Then

Elys(nys’(1)] = [0]®(7,7)[Ks(r)] = 0

s0 y3(7) = 0 almost everywhere.?2 Therefore, for ¢t > 7,

OPIXZH

2 I} is & moot point whether we should introduce the process y(-)
without a further assumption, since at this point we do not know
that there is a process y(-) for which &(¢,7) = E[y(t)y’(+)]. However,
it is convenient, and here and later, it shortens an argument not
involving y(-) which would be roughly as follows. Partition u«(f) =
[’ (1) u' (@) ws’(©)]” like H(-) and cbserve that f§ f& w/(O®R(,7)
u(r)dt dr = [terms involving (-} and ux(-) but not ws(-)]

t1 ' 3
+ fo @ @1 [ o | L #(,Ks(rus(r)ds > 0

and since u(- ) is arbitrary, for nonnegativity one requires

H/(t) _
[Hz'a) ®(t,7)Ka(r) = O.
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Hy' @)
0 = Ely®ys'(n)] = | H'(®) | ®(t,1)Ks(7)
0

= H'@)a(t,NKs().

Consequently, the covariance is unaltered if we set Ks(r) =
0 for all 7. This leaves the problem of realizing

R, O

067 =[5 o0 o=+ [ 10 e

KoMt~ + -

where H,(f) has p columns and rank p. (To this realization,
one adjoins ys(f) = 0 to obtain a realization of the original
covariance.) If p is zero, this leaves a nonsingular problem,
and we are through. Assume then p # 0.

Step 3: Proceed as earlier to change the coordinate basis

so that
_THu@ o
H©) = [H21(t> Im]'

Next, we show (by a different technique from that used
earlier) that Ky is symmetric and that we can, at least
after an allowable adjustment of Ky, assume 9[Kx] C
N[Kz]. First, let y(-) = [sn’(-) »'(-}]’ be the process®
with covariance (17). Observe that

017')(17

17)

(18)

Blgs@n/ 01 = 10 Tglote)| |20 | = Kal)

from which the symmetry and nonnegativity of Ka(t) is
immediate. Invoking Assumption 5 as earlier, let S{f) be a
nonsingular matrix such that Kep()S'(f) = [Ku() 0]
with Ky () of full rank. Define Ki(t) and Kn() by Kia(f)
S'(t) = [Eun() Ki@] Our task is evidently to show
that we can take Ki(t) = 0.Set 5(t) = I ®@ S©® 1y, and.
observe that §() = [§.'()) 7'()]" where $() has the
form [7’(¥) O]. Then fort > ,

B0 )] = SOH O | K20 | )

_ , Ku(r) Ku(r)
= SOH'®)®(,7) |:K22(7) 0 :I
Taking note of the form of §,'(s), it follows that H'(¢)
&, ) Kp(r) = 0 for ¢ > +. Evidently, the covariance
Ely(®)y’'(r)] would be unaffected if we replace Ki(r) by 0
for 7 < ¢, and in particular for » = t.
Now define the state-space coordinate basis change of
(11), to obtain F, H, and K with the latter two matrices
asin (12). At this stage, dropping the superseript hat,

G3'(15’1") = I:ORO gﬂXp} 6(t B T) + [Hlé,(t) H;1’<t):l q)(t,'r)
1) Kao 1= A+ o

Digression—Invertibility: A system 8 realizing ®(f,7) is

3 As before, one could avoid the introduction of y(:) if desired.
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termed invertible if from measurements on the output of
the system one can obtain causally the system input,
which is white noise, and the system initial state. Differ-
entiation may be involved; causality is essential. Observe
that up to this point the algorithm has proceeded by non-
singular transformations on the output vector, and by
change of the coordinate basis for the state-space of a
realizing system. This means that if the covariance (19) has
an invertible realizalion, so does the covariance (1). Further,
the relation between a causal inverse for a system realizing
(19) and one realizing (1) is straightforward to obtain
from the output transformation matrices. In the remainder
of Step 3, which we now describe, we shall introduce
another covariance, such that if it possesses an invertible
realization, so does (19).
Define a process § = [j1’ %."]" by
t

50 = u®) ~ Ha'Q) [ o) Fulon()is

— Hy'(Dya(t)

t

B0 = 30 ~ Fuln®) — Fa®) [ ¥G0)

‘Fr(o)yx(o)de  (20)

where ¥(-,-) is the transition matrix associated with % =
Fu(f)xz. Notice that the covariance of 3:(f), being ®u(t,7)
Ku(r)1t — 7) + --- is differentiable with respect to ¢
and 7 to vield a covariance of 3» which possibly contains a
delta function term, but no worse. This means that »(¢)
and then %(¢) is as well defined as #.(f), in that it may
contain a white noise component but nothing worse.

It is immediate from (20) that #(-), #(-) depend
causally on i;(-) and y.(-): a differential equation de-
scription is provided by

Il

an + F]_gyz 7.1)(0) = 0.
= — Hu'w — Hn'yz

w
21
272 = Jo — Fzzyz — Fauw.

These equations can also be rearranged in the following

way:
Flz w 0 ~ . _
Elle]+ s w0 =0

e
Vo T | Fy
wn| _ {Hy Ha |jw Iy
[y2:|_[0 I L]ery

This rearrangement shows that y:(-) and y.(-) are obtain-
able, causally, from 7:1(-), §:(-), and y(0). Consequently,
if an invertible realization can be found for £[7(t)5'(+)],
one has, with the aid of (22), an invertible realization for
Ely@)y'(r)]. Further, since (21) are inverse to (22), one
can construct the inverse for ®(-,-) by following (21)
with an inverse for ®(-,-).

A lengthy formal calculation shows that the associated
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covariance of 7(t) is

[ R Hy'Kas — Kot
(B'(t’T) B [K‘.QHZI - K?l K?? - K?Z’.FTZ, - F?‘ZKZQ]a(t - T)

H]l’(t)
+ |:—F2](t)j| X \I’(t;T) [Kll(T)

Fo(n)Kn(n) Pt —7) 4+ ---. (23)

The covariance & (¢, 7) of (23) is, with a simple reordering,
the same as the covariance defined in (14), which is the
covariance resulting after reduction of the state-space
dimension in Step 3 of the earlier method. In the last
section, the determination of ®(-,-) essentiallv finished
the procedure. Here, too, we are almost done: supposing
for the moment a realization of ®(f,7) is available, one
cascades with this realization the linear system of (22),
taking for the initial state covariance of (22)

o {B((%))] ["(0) yzl(oﬂ} = [g Kz?((»]‘

A messy calculation shows then that the output of (22) has
covariance (19). Another way of putting the point is to say
that if one has a system realizing &(-,-) in (23), i.e.,
matrices G(-) and J(-) and a nonnegative definite IT, such
that

1= 1iFy + Fu'fi + 6§ 1) = i,
l:-:[[-Elrll '_'F21,] = [KII F12K2'2] - éj’

750 RD
ST = [Kzszl—

(24)

H‘zl,K?‘Z - K:’.l, ]

K, Kzz — KoalFp' —~ FpKs

then a system realizing ®(-,-) is defined by matrices G(-),
J(-), and II, given by

G
G = o
[ - [Opx(r—p) Ipo ]J]

I(r—p)x(r—p) 0 ] 7 l:ﬁo 0 ]
1L, = 25
{ 0 0px» S =], K(0) (25)

and these matrices together with the matrix

n o
H‘[o K}

satisfy the realization equations (2).

The essentials of Step 3 of the realization process are
now complete. As for the earlier procedure, the problem of
realizing the original ®&(-,-) is reduced by Step 3 to that of
realizing ®&(-,-) of lower degree. Reapplication of Steps 1-3
will cause further degree, and possibly output dimension,
reduction until either a nonsingular covariance is encoun-
tered, or one of zero degree or zero output dimension.
There are however two caveats. First, the various con-
stancy of rank and differentiability assumptions need to be
fulfilled. Second, Assumption 2 needs to be retained for the
various covariances arising successively in the procedure.
That the extensibility property, other than perhaps the
observability part of it, is retained is immediately clear.

J:

(26)
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The extension of F and H on (f, & + €] allow via (21)
extension of the domain of definitions of ®(t,7), and
indeed its nonnegativity. To see that the observability
property is retained, one can use the following lemma.

Lemma 1: With

Hu®) O _ [ Fu@® Fe®
H@) = I:Hm(t) Ipo:| and I'() = [me Fzz(t)]

with Fa(t) of dimension p X p, then Assumption 2 implies

t+te ’
f Y (t,t) [Hu@) —Fa'(D)] [ i‘,;gg]\p(t,tl) dt>0

4
for all sin [#, &y + €], with ¥(-,-) the transition matrix of
l”n(t)l'l.
Proof: Suppose the result is false. Then there exists
some nonzero x;3(t;) such that the solution z:(t) of #:(f) =
anl?](t) Sa.tiSﬁCS Hu’(t).’l‘l(t) =0 and “le(t)lil(t) = 0 on
[t;, #1 + €]. Then the solution z(f) of %= Fz with z(t;) =
[2)/(&) OV is evidently z(t) = {z,/(f) 0] and satisfies
H'®x(t) = 0. This contradicts Assumption 2.

For nonsingular covariances, it is known that an in-
vertible realization is defined by the minimum II(f), viz.,
10, (£). Let us now show how this notion extends to singular
problems. The algorithm of Section III shows that the
nonuniqueness in choice of I1(¢) satisfying M (II) > 0 can
all be referred to the nonsingular problem derived in the
course of the algorithm, and that II,{¢) for the original
problem is given by a minimum II({) for the nonsingular
problem. The material of this section shows that an in-
vertible realization for the nonsingular problem yields an
invertible realization for the singular problem. Putting
these ideas together with the known nonsingular problem
result, it follows that for singular problems too, invertible
realizations are associated with minimum IT,(f).

The question arises as to how an inverse system can be
built. That for a nonsingular covarianee is easily obtained
[13], [19]; one would precede this by a cascade of various
nondynamic nonsingular transformations, corresponding
to Steps 1 and 2 and the bulk of Step 3, together with
dynamic systems of the form (21), as noted earlier. It is
worth noting that the buildup of the inverse system
actually proceeds in parallel with the algorithm for com-
puting II{¢). It would be valid, in fact, to view the algo-
rithm as a method for constructing a whitening filter, with
a realization of the original covariance matrix being
obtained as a byproduct.

We also have a very quick formal solution to the singular
filtering problem. Consider the system

%= Fz+ Gu Efz(0)z'(0)] = P
y = H'zx + J]_u + Jg?)

3&1=

@7

where u(-) and »(-) are unit intensity Gaussian white
noise processes, and u(-), ¢(+), and x(0) are mutually inde-
pendent and of zero mean. Assume that (27) is completely
observable, in the sense that H'()®({,7)xs, = 0 for all
¢t > 7 implies 2y, = 0. (If this is not the case, a coordinate
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basis change will separate out the unobservable part of
z(+); measurements y(-) are of course useless for esti-
mating this part of x(-), and for filtering purposes, we
can confine attention to the observable part.) Then
Elz@®y'(r)] = ®({,7)K(r) for + < { where K = IH + GJ’
and Il is Efz(@)z’(#)]. Suppose the following system with
appropriate known initial conditions is a causally in-
vertible realization of Ey()y’(+)]:

i =Fi+ Ga

y = H'Z + Ja. (28)
One must then have E[Z{#)y'(+)] = ¢, 7)K(r) for ¢ > r;
for suppose that E[Z2{)y'(r)] = ®(,7)K(7) for ¢ > 7, this
being the only possible form on account of (27}. Then, for
t>7, Ely@Q)y' ()] = H'OE[EWOY ()] = H' )2, 7)K(7).
But also, this quantity is H'#)®{,r)K (7). By complete
observability, K(r) = K{().

It follows that #(1) = £ [x(t),y(r), 7 < t] because, first,
E{[z@) — 2®)1y(n)} = 0 for r < ¢, and second, #(f) is a
function of 4(7), r < t and therefore of y(r), r < ¢ by the
causal invertibility. The filtering error is easily seen to be
11 — II. The role of #(-) in the scalar singular problem—
actually in smoothing as well as in filtering problems—has
been illuminated in Geesey [14]; for the nonsingular case
see [32], [33], [38]. In practice, it is not even necessary to
construct the realization (28). As we have seen, the inverse
of (28) is actually obtainable directly from the given co-
variance, and examination of the steps leading up to (21)
easily shows that components of & may actually be identi-
fied as lincar combinations of the states of the inverse
system.

V. STaTiONARY COVARIANCES

The algorithm of the previous sections applies without
change to the realization (over a finite interval) of

R, 1) = R8(E — 7) + HieMt—ng 16 — 1)
+ KeF'G-vg 1 —t)y (29

where F, I, K, and &£ are constant matrices, and ®(,0)
has a Fourier transform which is nonnegative definite
Hermitian for all values of its argument. This approach
will, however, lead to time-varying ¢ and J in the realiza-
tion, and to this extent is unsatisfactory. To obtain a more
practical solution, it is desirable to consider the problem of
realization over a semiinfinite intcrval; that is, we allow
the system realizing &(-,-) to start at time — o,

In this easc it is useful (although not entirely essential)
to make the following assumption.

Assumption 6: The pair [F, H]|is completely observable.
This immediately implies that Assumption 2 is satisfied,
s0 that the procedure of Section IV may be carried out.
Note the following.

1) Assumptions 3-5 (requiring constancy of rank and
differentiability of certain quantities) are always satisfied
in the stationary case.

2) At no point in these steps of the algorithm preceding
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the obtaining of a nonsingular B matrix do time-varying
matrices appear.

3) By Lemma 1, Assumption 6 continues to be satisfied
at every stage of the algorithm.

Finallv, then, a nonsingular covariance defined by
matrices F, I, K, and B remains to be realized. Now let

P = lim HO@h) = lim I{t,t)
th— — f— o
where
[ =1F + FI + (M — R)R~Y(UH — K)
I (to.fo) = O.

The limit exists by Assumption 6 as shown in e.g., [30].
Of course, P is constant and satisfies an algebraic Riccati
equation. Defining ¢ = (K — PEDR™ % and J = R}
essentially completes the procedure. Alternatively, the
approach of Section III may be used, since we can now
justify Assumption 1.

Ezample: Since the algorithm is suited more to an
efficient computer implementation than to hand caleula-
tion, a detailed example is difficult to present. However,
the simple example below illustrates some of the more
important points.

Consider the covariance (29) with

F=[-1] H=[-1 1]

0 2] R=[(1) 8]-

Then the caleulations of Section 111 proceed as follows.
Step 1: 7+ = 2, p1 = 1. No basis change is necessary.
Step 2: H, = (1], which is already of full rank. Again,

no change is necessary.

Step 3: In the notation of Section III, we have Ko =

[0], Ks» = [2], and Ky; and Ky, have zero rows. Finally,

" then

K

P = K» = |2].

Note that no Rieeati equation needed to be solved for this
example, since P became completely determined in Step 3.
Now

4 2 0 2
APy =12 10|=]1][12 1 0l
00 0 0

So we identify ¢ =

[2] and J = [(l):l

VI. CoxcLusioN

We have presented a procedure for realizing singular,
finite-dimensional matrix covariance functions, which at
the same time provides a new, and simpler, approach to
the scalar, singular covariance factorization problem.
1t is easv to construct a causally invertible realization, and
we have shown that the associated state covariance
matrix is the minimum mafrix at every time { over the
set of such matrices associated with all realizations of the
covariance.
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To be sure, we do require some technical constancy-of-
rank and differentiability assumptions for the ideas to go
through. But it should be noted that existing treatments
of the scalar singular problem [14],{16],{17] also require
such assumptions.

As earlier commented, there are some interesting con-
nections to singular control problems which we shall ex-
pound separately; here, one is interested in the dual of the
IT matrix associated with the invertible realization, but
one is also interested in determining the optimal controls
and singular strips. Connection to time-varying network
synthesis problems can be found in [29]; the network
parallel of the step involving reduction of the state-space
dimension of the covariance to be synthesized is the
series or shunt extraction of inductor or capacitor elements.

ApPPENDIX I

Suppose there exists a nonnegative definite symmetric
P, together with G(-), J(+) defined on [0,41] such that

P=PF +FP+ GG PO =P
PH = K — GJ’
JJ' = R.

Observe that these equations imply

MP) = [P (;;F_' ;QIY'P e K] - [~ﬂ

G =J'1=0

and so
P — PF' — FP — (PH — K)R-'(PH — K)' > 0.
Now use the definition (3) of Il,; set Z = P — 1I,, to obtain
Z —Z|[F' + HR-(H'll, — K)] — [F + (,H — K)R~!
‘H'|Z — ZHR-H'Z >0  Z(0) = P, > 0.

It is immediate that Z(¢) > 0 and so 1I,(¢) < P({#). Also,
the definition of IT,(-) implies 0 < II,,. (7).

Notice also that the matrix IL,(-) defined by (3) has
been shown by the above argument to be minimum
amongst all those matrices TI(+) > 0 satisfyving 1/(I1) > 0;
by minimum, we mean for all ¢ and such II(-}, II,(f) <
H{).

An alternative approach to establishing that 0 < II,,(t)
< P(t) is available using the results of [38]. Provided one
establishes the existence of an innovations representation
realizing ®(-,-) independently of the Riccati equation
solution bounding procedure above, one can show that
11, is actually E[Z{)1' ()], where #(¢) is both the state of
this innovations representation and the mean of z(t) con-
ditioned on measurement of a sample function of the
process with covariance ®(-,-). Then 0 < I, (1) < P(?) is
immediate. The better technique to be used for establish-
ing this inequality is a function of the background of the
reader.

The interpretation of II,() as E[F(#)Z'(f)] also estab-
lishes its minimality as a solution of (5).
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AppEnDIX 11

Our task is to prove the following result. Let ®(-,-) be
defined via

®@E,7) = R®)6(¢ — ) + H' (O)2¢,»K()1E — 7)
+ K'®)® (. H)H(7)1(z — 8 (1)

with R(#) nonsingular for all . Then the following three
_statements are equivalent.

1) &@,7) — 286(¢ — 7) for some 4 > 0 is nonnegative on
[0,4].

2) J& SJ& W (®RE)u(r) ddr = 0 and ®(-,-) non-
negative on [0,f;] implies u(¢) = 0 for u(-) continuous.

3) ®(-,-) has the extendability property described in
Assumption 2.

To show the equivalence, we shall use the following lemma.
Lemma: Let ®(-,-) be as defined in (1), and let ¥(¢,7) be

the transition matrix defined by

F"T KR—\H'’
HR-'H’

—KRK'

—F + HR—IK'} n)

Y(r,7) =1

and partition ¥ conformably. Then f¥ &, ) u(r)dr = 0,
t € [0,T], for some T and u(-) not identically zero if and
only if We(T,0) is singular; further, for such a wu(-),
fOTqD(T,T)K(T)u(T)dT # 0,

Proof: Suppose f§ G(t,r)u(r)dr = 0 for t & [0,T].
Set 2() = [ @@, 7)K(r)u(r)dr, so that x = Fxr + Ku,
£(0) = 0, and p(t) = S &' (r,)H(r)u(r)dr, so that p =
—F'p — Hu, p(T) = 0. It follows that R(t)u(t) + H'{)
() + K'({)p@) = 0, so that

x] _[F — KR
Pl HR-H'

‘%w,r) = [

—KR—'K x
-+ HR—IK'][p]' AD

Recalling that z(0) = 0, we have p(f) = ¥»(,0)p(0) and
so p(T) = 0 = ¥»(T,0)p(0). Notice that p(0) = 0, for
otherwise x(¢), p(t) and so u(¢) would be zero for all ¢.

Conversely, with ¥3(7,0) singular, choose p(0) # 0 so
that ¥a(7T,0)p(0) = 0. Set z(f) = ¥a(,0)p(0), () =
‘I’oz(t 0)p(0), and verify that u(f) = —R-)H ()x(t) —

RIOK'()p(t) yields JS§ ®@t,7)u(r)dr = 0 by reversal of
the earlier argument.

Because p(T) = 0, and u(f) is not identically zero
zx(T) = fOT (T, 7)K(ryu(r)dr #= 0.

Corollary: If R{t) > 0, condition 2 holds if and only if
W¥1,(£,0) is nonsingular for all ¢ & [0,4]-

The proof is immediate, and now we can show the three
conditions are equivalent.

1 =) 2: is immediate.

2 ==) 3: by the corollary, ¥(t,0) is nonsingular for all
i € [0,t1]. Hence there exists an extension of F(-), H(-),
K(-), and R(-) on (t, i + €] preserving continuity and
nonsingularity of ¥2»(¢,0). By the eorollary, ®&(-,-) defined
over [0, t; + €] fulfills condition 2, and so satisfies the
extendability property.

2 =) 1: By condition 2, ¥(¢,0) is nonsingular for all
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t € [0,5,]. Since ¥(-, 0) depends continuously on R(f),
there exists a suitably small 9 so that ¥ (,0) computed with
R(®) replaced by R(#) — #I is nonsingular for all ¢t € [0,4],
and so that B(t) — 47 is positive definite for all ¢ € [0,].
The result follows by the corollary.

3 =) 2: Suppose & is extendable, but that condition 2 is
not fulfilled. Let @ be such that f§ ®(,7)a(r)dr = 0 for
t € [0,41]. For the moment, let a continuous u(-) be
arbitrary on (41, & + €] and equal to ki for some constant IL
to be specified on [0,#]. Then

h+e phte
< f f w ()R E,m)u(r) didr
0 0

f1+ € f1--e
= f f w' ()RE,ulr) didr
t ty
ti4-e t
+ 2k f W) di f Rt rya(r)dr
t 0

rtite ti+e
= f f ' QR(E,7)u(r) didr
t 33

+ 2k j: T OH OBL) d fo o) K (2)a(r)dr

By the Lemma, f§ ®t,nK(r)i(r)dr = z(t;) # O.
Choose u(t) = H'(t)®(t,t)x(t) on (1, & + €], and obscrve
that for large negative &k a contradiction is obtained.
(Admittediy, «(-) is discontinuous, but it can be appro-
priately approximated by continuous functions, and a
contradiction still is obtained.)

Note the critical use of the observability part of the
extendability definition in the above argument, to ensure
that the second term on the right of the last cquality is
guaranteed nonzero.

TFinally, let us see why satisfaction of conditions 1, 2, or 3
guarantees that the solution of the Riceati equation (3)
exists on [0,#;]. Manipulation will show that the quantity
V1a(£,0) ¥ ~1(¢,0) satisfies (3), including the boundary
condition. By a standard uniqueness theorem, one must
have I1,({) = ¥1(¢,0)¥2~'(£,0), and then the Corollary
vields existence of II,(¢) on [0,4].
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