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Spectral Factorization of a Finite-Dimensional 
Nonstationarv  Matrix Covariance 

Absfract-For a  given  nonstationary matrix covariance with a 
iinite-dimensionality  property that  is  the time-varying  generalization 
of the rational  power  spectrum matrix property, we show  how to 
find a linear finite-dimensional  system  driven by white  noise  with 
output covariance  equal to the prescribed  covariance. 

T 
1. INTRODUCTION 

HE covariance  fact,orization problem, or time-varying 
spectral  factorization problem, can  be  stated as 

follows. Suppose there is given a  covariance a(. , .) de- 
h e d  and positive definite in a cert,ain region, sa)- [O? t l ]  X 
[0, tl].  What  linear  system,  with  white noise input,  has  an 
out,put  with  covariance a(. , - )? . 

In  this paper, we consider the finite-dimensional version 
of this problem, we allow a(.,-) to  be  a  matrix,  and we 
allow a(. , . ) t o  be nonst,ationary. 

The history of such problems is interesting. For sta- 
t.ionary  matrix a(. ~ .), frequency donlain procedures 
based on  factorization of the power spectrum  matrix  have 
been  available for some time, see e.g., [1]-[4]. State-space 
viewpoints of the finite-dimensional stationary problem, 
of a nature allowing possible modification for the nonsta- 
tionary case, are discussed in [5]-[7]; these  viewpoints 
make  use, at least  indirectly, of t.he positive real  lemma, 
enunciated in its original form  by Iialman [SI and Yaku- 
bovic [9]. 

When one moves to consider the time-varying case, it 
soon becomes clear that. t.he factorization problem is much 
easier for  nonsingular  covariances  (those comprising a 
sum of a  nonsingular  white noise component and a con- 
tinuous process component)  t.han for singular covariances 
(those  without. the nonsingular  white noise component). 
(The  terminology  nonsingularisingular is dravn from  dual 
control problems, incident,ally.) 

For the infinite-dimensional case,  Gohberg and  Krein 
have solved the nonsingular problem, [lo]; their solution 
is based upon solving an infinite number of I.‘redholm 
equations. In  the finite-dimensional case, an approach 
based on use of the Riccati  equation was suggested in 
[Ill and developed in more polished form in [12]  and 
[13].  Results  tying  together the material of [11]-[13] 
wit.h the Fredholm  equation  approach and  the Wiener- 
Hopf equation  appear  in  [14]  and  [15].  Refercnce [l%] is 
also relevant. 
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In  the nonsingular problem, there is no  essential differ- 
ence in  dealing  with  matrix @(.,.) and scalar @(.:.). 
This is, however, not so for the singular  problem, and 
earlier results  have been confined to  scalar @(. :.) (al- 
though,  actually, a limited class of matrix a(.?-) can be 
t,reat.ed by a trivial  extension).  Results for scalar a(.,.) 
n-ere again suggested in [Ill: and these were extcnded  in  a 
1968 technical  report  subsequently  appearing as [16]. 
In  June 1968. there also appeared thc thesis of Branden- 
burg [li] containing  many sinlilar ideas, and in Dcccnlber 
1968 the thesis of Gccscy 1141. IIuch of 1171 \vas subse- 
quently  reported  in the  literature [ H I .  but  unfortunately 
[18] does not cover one of the most interesting  ideas of 
[17], to  the effect that a singular  factorization  problem of 
given (state-space) dimension, can  be  reduced to  a non- 
singular problem of lower dinwnsions than the original. 
(Solution of the singular  problem via transformation to  a 
nonsingular problem was initiatrd in [ l l  1: it is the di- 
mensionality reduction uf [ l i ]  which is the  intcwsting and 
novel idea.)  This  idea is also developed in  [14], n-hich 
considers too  at length thr i ~ w r l f b i l i t y  of the system solv- 
ing the spectral  factorization problem. For the nonsingular 
case, the invrrtibility problem is easily scttled, scc [I31 
and [lY], but  Kailath and Gresey wcrtx thr  first to  cs- 
plicitly seck such solutions  (innovations  reprcwntations), 
and  to  note  that some of the systems solving the singular 
problem in  [16]  and [IT] were in  fact.  invertible. 

Other work on the tinw-varying problvm can be found 
in [L‘O] and  [Zl]. approaching the problem: respectively: 
as one requiring  factorization of diffcrrntinl oprrators.  and 
one requiring  solution of a nonlinear integral  equation. 

As noted  earlicr.  in  this  paper wr consider the nonsta- 
tionary finite-dimensional matrix problem. T1-e also allow 
a(.,-) to be  singular. 

Our methud of approach differs from any employed in 
treatments  to  this point of the scalar problem. Hon-ever, 
we do  make use of  thcl notion of reducing the state-space 
dimension where possiblc, though  not in the same via)- as 
Brandenburg [li].  In general terms, \IT relatc the problem 
for a singular r x r covariancc  with  associated  state-space 
dimension u to  thr problem for an associated r’ X r’, not 
necessarily nonsingular,  covariance  with  aasociatrd state- 
space  dimrnsion 71’. One has r‘ 5 r, >I’ < i t ,  zcith u.t least 
m e  i n e q w l i f y  liolrling. and one can  continue a series of 
such dimension reductions  until  either  a nonsingular (and 
thus solvable) problcm is encountered: or a dimension 
shrinks to zero, leaving a trivial  problcm. The dimension- 
ality  reduction is critical, since without it there is no 
guarantee that  thc algorithm will terminate.  (Kote  that 
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in contrast  to [17],  one does not delay the implementation 
of a dimensi0,nalit.y reduct,ion until a nonsingular problem 
is encountered.)  A further  property of t.he procedure is 
that  it is straightforward to  obtain an invertible sysDem as 
the solution of the fa.ctorization  problem. 

If one a.ttempts  to  apply  the scalar  singular  procedure 
of [16] in t.he matrix case, one encounters a difficulty as 
soon as different, numbers of differentiations of the various 
components of t.he vector process are required to produce 
white noise. One ca.n seek to  take  this  into  account  with 
the procedures employed by  Bryson and  Johansen [22] 
in t,heir st>udg of Kalman filt,ering problems, but one en- 
count.ers still  a  further difficulty: it. may  be that. it. is never 
possible to  obtain a  nonsingular  problem via differenti- 
ation, nor at   the same time a totally singular prob1em.l 
Indeed,  one  has a new claM  of problems, termed  in the 
control  literature  partially singular, which does not 
appear  in  the scalar case. Nevert.heless, unpublished work 
of Silverman and .Anderson, and a  thesis of Powell [34], 
achieves  a  solution t.his way, and filoore has  indicated  in  a 
priva.t.e comnmnicat,ion how subst,antial simplification 
can  be  made using t,he  ideas of Goh 1231, [24] developed 
for  singular  control problems. Thc mct,hod of t.his paper 
however seem  to  be simpler. 

In  developing t.he  ideas of this  paper, we ha.ve benefit.ed 
substant,ially  from  a  survey of linear-quadratic  variational 
problems,  see [25]. Combining the idea.s of [25 ]  with  some 
of t,his paper, we have discovered new control  results  (and 
network t.heory results) which we shalI report  separately. 

The  plan of the paper is as follows. In  Section 11, we 
give a precise formulation of the problem, and  note  the 
two key  alternat.ive  assumptions  under which a. solut,ion 
may be obtained. In  Sections I11 and  IV using each 
assumption in turn, we solve the problem. Section 17 
contains some remarks  on the st,ationary problem, and 
Sect.ion VI  contains concluding remarks. 

11. FORMULATION OF THE PROBLEM 
Suppose there is given a bo-variable funct.ion a( -;) 

defined on [O,t,] X [O,t,], which can be written  in  t,he 
form 

a(f,T) = R(t)G(t - T )  + H’(t)@(t,.r)K(T)l(t - T )  

K’(t)@’(T,f)H(T)l(T - t ) .  (1) 

Here, 6( - )  and 1 ( . )  denot,e the delta.  function  and unit 
step funct.inn, respectively, e(. , .) is the 71 X 11. tra.nsition 
matrix associated  with some equation ?i- = F(t)x,  and  the 
superscript  prime  denotes  matrix  transposition.  The 
ma.t.rices H ( . )  and K ( . )  are n X r, R ( . )  is r X r, and 
F ( . ) ,  H ( . ) ,  K ( . ) ?  and R ( . )  are all  assumed to  have  entries 
differentiable  as  many  times as  are  required  in  the algo- 
rithms to  follow. 

The covariance of t.he output of any linear finit,e- 

sum of a nonsingular  covariance and a  covariance of t.he type 
1 For example, the given  covariance matrix could be t,he direct 

&( t )@i (s )  for smooth &-I. 

dimensional system excit.ed by  white noise will have the 
form (1).  It. is well known that t,he comriance  has a. non- 
negativity  property,. viz., 

Ptl Ptl 

We shall  say t.hat a system realizi~~q a(. ,. ) is a system 
such  that. when  driven  by  white noise and wit.h an  appro- 
priate  random  initial condition, the  output, covariance 
over [O,tl] is a(. , e). It. therefore  clearly  makes sense, 
given an a(. , .) of the form of (1) and  with t,he nonnega- 
tivity propert,y, 60 search  for a system realizing @I( .;). 

In  searching  for  a  system realizing a(. , -), it is con- 
venient to  restrict a search  for  such  systems to  ones wit.h 
an impulse response J(t)G(t - T )  + H’(t)@(t,T)G(T)l(t - 
T ) ,  so t.hat  it. is t.he nlat,rices G ( . )  and J ( . ) ,  together with 
the system in.itia.1 condition, which deiine the system. The 
state-space  equat.ions of such a system are ?i- = F(t )z  + 
G(t)u, ?J = H’(t)z + J( t )u ,  and u( . )  is assumed to  be unit 
int,ensity  white noise, i.e., E[u(~)u’ (T)]  = 16( t  - T ) .  The 
initial  condition on the system is a  random one, requiring 
E [x(O)x’(O)] = Po for some nonnegative  definite  sym- 
metric Po, and s(0) is independent of u( . ) .  In  order  t,hat 
such a. system realize a(. , .), it is necessary and sufficient, 
[13] that  the following equations  be satisfied on [0,t1] 
for  some  nonnegative  definite  symmetric P(t):  

P = PF‘ + FP + GG‘ P(0) = Po 

PH = K - GJ‘ 

JJ’ = R .  . (2) 

The ma,trix P(t) is a.ctuaIly E[z(t )d( t )] .  
If t,he system is known, but  t>he covariance (1) is not,  the 

lat,ter may easily be  computed using (2). However, if tahe 
covariancc is known in t.he  sense tha.t F, H ,  K ,  and R a.re 
given, t,he converse problem of finding the system, or 
finding Po, G( .), and J ( . )  such that (2) holds, is harder; 
the paper  addresses precisely this converse problem. 

To solve the converse problem, there  are  two classes of 
assumptions we can make. First, we  ca.n assume the 
existence of Po = Po’ 2 0, G( . ) ,  and J ( . )  sat.isfying (2) 
for the prescribed F ,  H ,  K ,  and J (  a )  wit.hout  assuming 
that we know t,he  particular  values.  Then we can attempt 
to  compute t,he values of Po, G(.), and J ( - ) ,  or indeed 
any  other  triple sat,isfying (2), i.e., we st,art. wit.h the fol- 
lowing assumption. 

Assumption I :  There exists a system defined by mat.rices 
P(.), G ( . ) ,  El(.), J ( . ) ,  and Po, wit,h the a.ctua1 values of 
G( .), J ( - ) ,  and Po unknown, which realizes t.he  covariance 
(1). 

This a.pproa.ch is followcd in  Section 111. Clearly, it is 
t,o an extent  unsatisfactory,  since it leaves  unanswered 
tlhe  question of what properties of the covariance  alone 
imply  existence of a system realizing t.he  covariance. Now 
it  turns  out  that mere  nonnegat,ivity  in the earlier de- 
scribed sense of a  two-variable @ ( t , ~ )  of the form (1) is not 
quit.e adequate  to  gmrantee  this existence. Besides 
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various  technical  assumptions det.ailed a.s t,he need a.rises, 
the following assumption is also required. 

Assum.ptim 2: @(-, .) has the following extendability 
propert,y : if a( -, .) possesses the nonnegativity  property on 

, [O,tl], then  there exist definitions of F ( . ) ,  El(.), K ( . ) ,  a,nd 
a(-) on (f1,tl + E], for some e > 0, such  that. I?(.,.) 
possesses the nonnegativity propert,. on [O,tl + E] and 
such  that Sf:'' ~'(.,tl)H(r)H'(.)~(~, t1) dr is non- 
singular. 

N0t.e t,hat. this  assumption is one  on the cova.riance 
alone;  note a.lso that  it will necessarily be sahfied by any 
covariance defined on [O,t1] wbich has  a  system realizing 
it. on [O,tl]-for any definition  for the system of F ( . ) ,  
G( .), H (  .), and J (  .) on (tl,tl + E ]  preserving continuit,. 
and such that  the nonsingularity of the observabilit,. 
int,egral is fulfilled d l  define an extension  for t,he covari- 
ance,  in which K ( . )  and R ( - )  on (tl,tl + E ]  are  computed 
via (2). For t.hese reasons,  t.he  assumption is well justified. 

A realizat.ion procedure based on t.his assumption is 
presented  in  Section IV. The computations a.re almost 
identical  with  those of Section 111. The justification of 
t.he  computational  procedure is however more complex, 
and herein is the reason  for first giving t,he procedure of 
Sect.ion 111. 

As noted  in the introduct.ion,  in the nonsingu1a.r case, 
one can  fairly easily solve the nonsingular problem. One 
proceeds a.s follows. Define a ma.t,rix n,( .) by 

r i m  = DmF' + Frr, + (DmH - K ) R  -l(rImH - K )  ' 
rI,(O) = 0. (3) 

Then t,he ident.ifications G = (K  - IT,H)R-i and J = 
R* ensure satisfac6ion of c2) with P(t) = IIm(t);  in par- 
ticular, Po = 0. 

The technical  question  arises of ensuring t,hat (3) has 
no  escape t.ime, i.e., ensuring that II,(t) exists  on [O, t l ] .  
This is guarant,eed  either  by  Assumptions 1 or 2. In  case 
Assumption 2 holds, one  can show, as  in Appendix I ,  
that &(t)  is bounded  above a.nd below for  all t E [O,t1]. 
This eliminates the possibility of an escape t.ime. In  case 
Assumption 2 holds, it follows, see Appendix 11, that 
a(. , .) is positive definite  on [O,t1], i.e., that, 

for some 7 > 0 and all u ( . ) ;  this condition  guarant,ees 
existence of &(.) by  a  theorem of [35], modulo a  straight.- 
forward  time  reversal.  For completeness, a proof is also 
conta.ined in Appendix 11. 

Not.icc that t.he equivalence of Assumption 2 and t.he 
positive definite property is va.lid only for nonsingular 
R(t); attempts  to tackle singu1a.r realization  problems via 
imposition of a positive  definite  pr0pert.y on a( +, - )  (as 
opposed to a  nonsingular  covariance possibly derived in 
the course of solving the rea.lization problem) are in- 
trinsically attempts  at solving too  restrictive  a problem. 
Put  another way,  hssumpt,ion 2 rather  than positive 
definiteness (or even  a  demand that J,$ u'(t)@(t,r) 

U ( T )  d tdr  > 0 for all  cont.inuous . (  .) not ident.ically zero) 
is t.he  most, natural condition encompassing nonsingular 
a.nd singular problems. 

In  case R is singular, the approach based on (3) fails, 
and  the realizat,ion problem is much  harder.  For zero R, 
it  can  sometimes  be the case that application of the scalar 
covaria,nce procedures of  I161 will solve the problem. 
(This view  is espoused in  [26].)  Our  solution  procedure 
makes  no  such  assumption. 

Another  solution  procedure solving t.he same  problem 
has come to our  notice since preparation of the first draft 
of t.his paper, [W].  In order to compare the two pro- 
cedures, we shall  defer comment on [ X ]  until  the  details 
of our  procedure  have been described in the next  tn-o 
sect.ions. 

In preparation  for the next two  sections, we now note 
the following points. 

1)  We  shall have occasion to changc the state-space 
coordina.te basis; t.his of course  has no effect on the given 
covariance, so that  the essence of the spectral  factorization 
problem is unchanged. 

2) We shall  have occasion to transform the vector 
process y(t) of cocariance a(..-). Thus if S(t)  is a non- 
singular r x I' matrix of continuous  entries, D(tj = S(t)g(t) 
has  covariance &(t,r) = S(t)Cl',(t,r)S'(r). .Again, the 
essence of the  problem is uncha.nged. 

3) Our  solutions to  the realization problem will 
actually  demand  further assumptions than Assumptions 1 
or 2; these extra assumptions are ones requiring differ- 
entiabilit,y of t,he ent.ries and constancy of the  rank of 
various  matrices, and, physically, seem to amount, to  
disallowing structural changes in the system realizing 
a(. , .). The differentiability and constancy of rank 
assumptions will be explicitly listed as assumptions when 
they  are needed. 

111. REALIZATIOS GIVEN N O D E L  EXISTEXE 
We start with (1) and  the assunlption that  there exists 

some G ( - ) ,  J ( - )  and Po (and  therefore P(t ) )  such that (2) 
holds. W h a t  these laffor  mafrices actual[y are is -tml;notcn; 
in fact, we do  not  even know the number of columns of G 
a.nd J .  For convenience! let us rewrite  this assumption as: 
there exists a  nonnegative definite symmetric P(t)  defined 
on [O,tl] such  that. 

d l (P)  = 
P - P F ' -  FP PH - K >_o.  [ H'P - K' R 1 (5) 

(Observe that (5) implies the existence of G( .) and J (  .) 
satisfying c2) a.nd convsrscly.) 

Let us adopt the convention that E ' ( . )  will denote the 
matrix whose existence is abstractly known but. whose 
value is not known. and II(. j v-ill denote 3 nonnegative 
definite  matrix whose calue ws shall  find, and which 
satisfies ( 5 )  n-ith P ( .  j replaced by n(.). Then finding a 
nonnegative XI(.) satisfying (5) is ecluivalcnt to  solving 
t.he realization problem of finding G'(.). J ( . ) ,  and a PO 
satisfying c2). [compare ('2) and (Sj]. 

As noted  in the previous section.  with R ( . )  nonsingular, 
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the problem of finding a IC(-) is e a d y  solved. Define 
nm(-) by (3), and,  as shown in Appendix I, there is no 
escape tirile; one easily checks that iW(H,) 2 0. Furt,her, 
as  noted  in Appendix I, the f I m (  e )  defined by ( 3 )  is mini- 
mum amongst,  all  matrices 11( .) for which II(t)  = II’(t) 2 
0, i.e., L ( t )  5 n(t) for  ail t and all II(.). 

To tackle the case of singular R(t), we shall apply  one 
or b0t.h of two  sorts of reduction  st,eps to M(P). One step 
involves reduct,ion of the dimension r or R(t) and is 
effect.ed with the aid of output  transformations.  The 
second step involves reduct,ion of t,he dinlension n. of F (  a ) .  

Applicat.ion of these  reduction  procedures  leads  ult.inlately 
to  either a problem with  output dimension of 0 (Le., no 
process remains t.0 be rea,lized), a  problem  with state 
dimension of zero (t.he process has  no  dynamics), or a 
problem  with  nonsingular R matxix (then a. known pro- 
cedure  applies). h flow diagram summrizing  the whole 
procedure is given in Fig. 1, and  can  be examined  in 
conjunct.ioh  with the detailed  descripiion of the procedure. 

Step  il-((Output Transformation) .- Make  the -following 
assumpt,ion. 

Assu?nption 3: The entries of R( . )  a.re cont~inuously 
different,iable k t.imes, for some k 2 1, and R(t) has con- 
stant  rank p on [O,t,]. 

Then t.here exists a nonsingular S wit,h ent.ries k times 
cont,inuously differentiable  such that 

wit,h 80 a nonsingular  matrix  (here, p l  = r - p ) .  Set I? = 
HS’ and I? = KS‘. [To see that, S ( - )  exists, notice that, 
by the Lagrange  method [27] me can  write R(t) = V(t)  
V’(t) 1vit.h P ( t )  square, of rank pj and wit.h entries k t,irnes 
continuousiy differentiable. Then  by Dolezal’s theorem, 
[36], there exists a nonsingular S’(t), with  ent,ries 7c t,imes 
continuously differentiable, such that, V’(t)S’(t) = [Vl’(t) 
01 for V1’(t) with p colunms. Then set. &(t) = V1(t)Vl’(t).] 

The pl1ysical interpretation of t.he  tra.nsformation  is as 
described near the end of the last  section;  in lieu of ex- 
anlining  a process g ( t )  of covariance @(t,r), we exanline a 
process g(t) = S(t)y( t )  of covariance S(t)&(t,~)S‘(r).  
The last pl entries of Q(t) do not. contain  a  nonsingular 
whit,e noise component,. 

Xow drop  the  superscript hat.. 
Step %-(Furthey Output T~ansfmnzatimz and Output 

Din~ension Reduction): Partition H(t)  as [Hl(t) H2(t)], 
with H2(t) of dimension 12 X pl.  Rhke  the following 
assumption. 

Assumption 4: Hz( t )  has constant. rank p I p l  on [O,t1]; 

If p = pl ,  pass to  St.ep 3. Othenlrise, let Sdt) be a non- 
singular pl  x p l  mat,rix  with  entries  as differentiable as 
the entries of H2(t )  and  such tha.t. Hz(t)So’(t) = [I&(t) 01, 
n;it,h B2(t) having p columns. (Xote t.ha.t  Doleial’s  theorem 
guarantees that So(t) exists.) Set S(t) = I @So(t) with 
the unit, mat.rix of dimension (P - p J ,  and define A(t) = 
S(t)R(t)S’(t), B(t) = H(t)S’(t), K(t)  = R(t)S’(t). This 
yields, dropping  t,he  superscript hat again, 

K(t )  = [Kl(t) K z ( 0  K3(t)l. 

Here, K ( t )  is partitioned like H(t) .  Now observe that. (5 )  
forces K3(t) = 0. (Any vector whose entries  are 0 except 
for  t.he last (p - p l )  is in t.he nullspace of R(t), and so for 
(5) to  hold must be  in the nullspace of PH - K .  It is in 
t,he  nullspace of H ,  and so must  be  in the nullspace of K.)  
This conclusion of course uses t.he fact  that P(t) exists, 
but does not use it.s value, which anyway is unknown. 

The physical interpretation is that  there is an  output 
transformat,ion whose effect is restrict.ed to  those com- 
ponents of the process not containing  a m7hit.e noise com- 
ponent.  After the t,ransformation, the last. (pl  - p )  entries 
of the vector process of covariance @( ., - )  are zero almost 
everywhere, and, accordingly may be dropped  from 
consideration. 

Now define 

8, = [“‘ O ] I? = [HI H z ]  B = [Kl K21. (7) 
0 OPXP 

Also define the matrix I@ in  an obvious  fashion. The same 
P that guarantees (5) will guaran.tee &(P) 2 0. Further, if 
we demonstrate the exist.ence of and  compute a II such 
that. &(H) 2 0, then M ( H )  2 0. 

If now p = 0, realization is immediate  because Ra is 
nonsingulax, and if not, we proceed to  Step 3, bearing in 
mind that Hz(t) has  rank p .  Drop the superscript hat 
a.gain, a.nd rederne r t.0 be  the ne% dimension of R. 

Step S-(StateSpace C0ordin.de Basis Changes  and 
State-Space Dinren&ma Reduction): Select a coordinate 
basis change  matrix T(t) ,  nonsingular and  with entxies as 
differentiable as those of H2(t),  such that, 

(Again, we appeal t,o Doleial’s  t,heorem.) Also define E = 
TFT-l + TT-l, l? = TK,  I? = (T-l)’H. The matrix P 
(and n) tmhsforms  according to  p = TPT’ and  then 
:@@) = (7’ @I,)M(P)(T’ @ I 7 )  2 0. (Notice  t,hat  for E 
t.o have  ent,ries which a.re k times  continuously differenti- 
able, T must,  have  entries which are ( k  + 1) times con- 
tinuously differentiable, because T occurs i i ~  the formula 
for E.)  Now drop  the  superscript  hats. 

Partition P a.s 

(and TI similarly),  with Pn of dimension ( n  - p )  X (n - 
p) and Pzz of dimension p X p ,  and part,it,ion K similarly 
to  H .  The last p columns of PH - K must  be zero, which 
means that, 

Till this point,  t,he  act,ual  value of P(t) has been unknown. 
However, t.his equation identifies the matrices Pn and PZz 
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associated  with any and every system realizing & ( e  , e ) ;  
in  particular  then, we must,  have also Dl2 = K12 a.nd nT2 = 

Kz2,  with KZP symmetric  and nonnegative  definite  because 
II and P have  this  property. We must still find nIl(t), and 
we have t.he knowledge that some Pl1(t) exists for which 
H ( P )  2. 0. 

It may  be  the case t,hat.  t,he  various dimensions arising 
in  Step 2 lead to  Hl( t )  having  no columns, and accordingly 
Pll and PIz evanesce. In  this case, the realization pro- 
cedure  terminates because all  entries of P and II are 
identified. Suppose  therefore this is not so. 

Kow brcause P(t) 2 0 for  all t ,  it must. be  t,he case that 
K22(t)a = 0 for some t and a implies Kn(t)cr = 0, and so 
Klz’(t) = Kzz(t)Kq2P(t)Klf’(t). Here, the superscript # de- 
not,es the pseudoinverse. Xow (in  order to  block-diago- 
nalize P(t) and I I ( t ) )  define afurther coordinate basis change 
ma.trix 

Obviously, T(t)  is nonsingular; to ensure that it  has 
entries  inheriting the difTerent,iability of K y 2 (  .) and K2?( .) , 
we assume the foilowing. 

Assumption 5: The  matrix Kzz(t) has  constant  rank on 

(This a-ssumption ensures that ent.ries of KT2’(t) inherit. 
the differentiability of entries of K22(t).) 

Kow set E = TFT-1  + f’T-l, If = T K ,  = (T-’)’H, 
p = TPT’, and fI = TIIT’. In  particular, 

l0,TI. 

P = p O ] (12) 
0 Pzz 

nith $11 = P11 - PlZPm‘P12’ for  example. (In comput,ing 
p ,  (10) is used.) Likewise, fi is 1111 @ Kz2. Drop t,he super- 
script, hats again, and consider the inequality M(P)  > 0, 
recalling that PIz  = K ,  and P,, = K e a :  

stage is set for further  application(s) of St,eps 1-3, and, 
provided that-  the assumptions  corresponding to Assump- 
t,ions 3-5 are sa.t,isfied, one is guaranteed that  the process 
must  end  in one of three ways. Either one is left. with  a 
process of zero dimension to  realize, or a. process with no 
dyna.mics, or a process with nonsingular R. In  each case, 
determination of II and  thus realizat.ion is immedia.t.e. 

Here  are some other  points. 
1) Suppose  one is after  the minimum II, call it. nm, for 

which the original M(H) in ( 5 )  is nonnegative  definite. 
(That  there is a  minimum  for the singular  problem is not, 
a t  once obvious. However if the realization algorit.hm goes 
through, we can  construct I t m ,  as explained below.) In 
case R(t) is nonsingular for all t ,  Lenma 1 gives nm(t). 
Ot,hemise, because t.he various reduct,ions of St,eps 1-3 
preserve the ordering of lI matrices, in  the sense that if 
111( .) and 112( .) are two solut.ions of X(II)  2 0 and if 
fil( a )  and &( .) are  the corresponding solut,ions of :@(fi) 2 
0 derived after appIicat,ion of one  or  a  number of Steps 1-3, 
then &(t) 2. I T 2 ( t )  if and only if fil(t) 2 f i z ( t ) .  (This is 
easily seen, for the only transformat.ions of the n are 
congruency transforma.tions.) Consequent,ly, if successive 
applications of Steps 1-3 lead to  a nonsingular sit>uat,ion, 
for which a  minimum f im(t)  can be computed,  this  re- 
flects  back to  a  minimunl II,(i) for the original inequalhy 
X(II)  2 0. If successive applicat,ions of Steps 1-3 do not 
lead to  a nonsingular sit.uat,ion, but,  do  lead t,o a  realization, 
it  must be the case that all of t,he  matrix n of a.ny realiza- 
t.ion is uniquely  identified, i.e., &(t) = U(f) for  all realiza- 
t,ions. A realization  associated  with minimum II( .) has, 
as we shall see, an inuertibilit,y  property. This is known 
for  t,he  nonsingular.case; see [14],  [15],  [38], a.nd [31] for 
results  connecting  minimality and invertibilit,y  properties. 
The fact,  t,hat, II,(t) defined in (3) defines, for the non- 
singular case, a.n invertible  realization first, appeared  in 
[19], see also [12] and [131. 

2) Suppose a(.,.) is singular, and define II, by (3) 
with R replaced by R + eI for E > 0. If P satisfies (j), 
then P also satisfies 

0 
Make  the following definitions: 

P = PI1 P = F11 B = [ -Fzl’ Hn] 

Then J?(p) is precisely the  top left part of U ( P )  which is 
not  identicaiiy 0. Obviousiy, &(p) 2 0 is cquisdent.  to 
M(P)  2. 0, every  part, of P, Z?, E, a.nd R is known? and 
Pll is unknown,  although the fact, of its exist,ence is known. 
The search  for  a II satisfying M(n) 2 0 is equivalent to 
the sea.rch for  a fi such  that. &(fi) 2 0. 

The crucial  point is the reduct,ion  in the effective st,ate- 

0 OJ 

and  then  the  argument of Appendix I yields 0 5 II,(t) 5 
P(t). An  analysis of the differential  equation for II, will 
show t,hat. II, increases as e -+ 0. In  view of t.he  upper 
bound P(t) on IIc( t ) ,  i t  is clear that, lim II,(t) = a(t) 
exists; with n(t) 5 P(t). Kom for  each E > 0, M c ( I I , )  2 0;  
one cannot. necessarily take  the limit to  conclude t,hat 
J/(E) 2 0 for fi(.) is not  guarant,eed differrntiable. 
However, the Helly convergence theorem  [37] does 
guarantee  t.hat 

6-0 

space dimension achieved at this point. If I? is non- c h i  - (ITF’ + .FIT)& (GH - K)dt 
singular, fi can be obtained  immediat,ely. If not., then  the R dt 
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is a  Stieltjes  measure  with the nonnega.t.ivjty property 
,f$ rc’(t)clllr(E)zLl(t) 2 0 for all  continuous m ( t ) .  The  three 
steps of the algorithm just presented  can all be applied 
to  the measure, and in the event that t.he various con- 
stancy of rank  and differentiability  assumptions are valid, 
one  can  identify f i ( t )  as & ( t ) .  Therefore, the same con- 
stancy of rank  and differentiability  assumptions which 
enable the algorit,hm t o  be carried  t.hrough will also 
guarantee  t.hat when a(-)  is formed by  the  above pro- 
cedure it will be differentiable and, accordingly. yield a 
solution of the realization problem. The limiting  procedure 
from the computational  point of view is not attractiye. 

3) As noted in [25], (5) when associated with  the co- 
variance  property becomes a t.ime-varying analog of the 
I<alman-Yakubovic equations [8]![9]. As such,  it can be 
applied to problenls such  as  network  synthesis, see e.g., 
[39]. where,  incidentally,  nonsingularity of II( . )  becomes 
important. More  importantly  though, we note that with 
obvious changes, the material of this section applies to 
the problem of realizing a stationary covariance,  with 
constant F, H ,  K ,  and R, via  a  time-invariant  system. 
The various  state-space  and output  transformations all 
become time-invariant,  and Ii becomes zero. I t  is known 
tl1a.t the time-invariant problem with nonsingular R is 
much easier to  solve, see [5], [30], and  the  material here 
provides  a s!-stematic way of reducing  a  singular  problem 
to a nonsingular problem. 
4) Treatments of the scalar  covariance  singular prob- 

lem  due to Brandenburg [17], and subsequent.ly Geeseg 
[14] have relied on  converting the singular problem to a 
nonsingular problem of t,he  same  state-space dimension, 
as in [16], but  then showing that  the Riccati  equation 
associa.ted with the nonsingular problem could be replaced 
by a  Riccati  equation of lower dimension. In essence, the 
method  here  carries out this sort of reduction at  each step 
(rather  than wait.ing until  a nonsingular problem is en- 
countered),  and, moreover, separates this reduction  from 
any requirement. of nonsingularity. Also, it is this  reduction 
a t  each st.ep which guarantees  termination of the algo- 
rithm; earlier  scalar  singular  results needed a  separate 
proof uf termination. 

X generalization of the approach of [14],  [16],[17] to  the 
scalar problem has been developed in  the thesis of Powell 
1341 for the matrix  covariance  singular  problem, and  it is 
worthwhile to  note some similarities and  differences be- 
tween Powll’s  and -our methods. The more important 
oncs seem to be as follows. 

a)  In both  methods, an assumption  that  there exists 
some system realizing the prescribed covariance, coupled 
with  differentiability and  constancy of rank  assumptions, 
will  allow the algorithms to be  carried out. On the other 
ha.nd. Powell does not use our Assumption 2 (our estend- 
ability  property  for the original covariance). Rather, he 
demands positive definit.eness of a nonsingular covariance 
derived in the courie of the algorithm. 

b) Powell’s algorithm  contains  a  sequence of output. 
transformations and differentiations  interlaced;  ours  intcr- 
laces output  transformations  and  state  transformations 
(which involve differentiability of the coordinate basis 

change mat,rix, and  to  this  extent involve differentiations). 
Both  procedures requirr various  constancy of rank  and 
differentiability  assumptions, but, since the procedures 
diverge after  thc first step,  it is hard  to see whether the 
assumptions are equivalent. 

c) In Pon-ell’s procedure, there is no reduction of the 
size of the II matrix of interest as one proceeds through 
the algorithm,  though  as  a final step, one ran achieve a 
reduction.  Our  method  may involve a  sequence of reduc- 
tions  through the course of the algorithm. 

d) As shown in  the next section,  our  method  always 
allows the construction of an invertible  system realizing a 
prescribed covariance,  with the inverse  actually  comput- 
able  in the course of thc  algorithm. Pou-ell’s mrtllod does 
not always  lead to  an inverse  system,  although  it  appears 
that  this is due to a  failure of the invc,rsion algorithm 
rather  than  the derivation of a  noninvertible  realization. 
(In this  connection,  it should be noted that Powell’s 
definition of inrertibility is s1ightl;v different from ours.) 

When our algorithnx is specialized to  the scalar co- 
variance case, it is the issue raised in  b) above which 
again tends  to distinguish  it  from the algorithm of [16]. 

5) Suppose one knou-s  a  system ( 2 )  which rcalizes a 
certa.in covariance, and suppose one \\-ants  a  q-atcm 
associated  with Urn(!)  realizing the  san~tl covariance. 
(Such a  system,  as we shall see, has an invcrtibility 
property.)  This  problem  can be simply formulated  as 
follows; one seeks the nlinimunl nonnegative definite II 
such that 

L fi - IIF’ - FlI IIH - (PH + GJ’) 
N’II - (H’P + JC‘) JJ’  1 2 0  

or, equivalent.ly, with 2 = II - P 5 0, one seeks the 
minimum 2 for which 

2 - ZF’ - FZ + G‘G‘ ZH - GJ‘ [ H’Z - JG“ JJ’ 3.0 

6) I t  is clear from  the algorithm given that all solu- 
tions n(.) satisfying the original X(n) 2 0 of ( 5 )  are 
uniquely  determined up  to  that  part satisfying a condition 
;ir(fi) involving a nonsingular 8: 

R e  hare recalled that  the minimum fi(.) satisfJ-ing  this 
inequality is given by (3)) and  thc question arises of what. 
other fi(. ) satisfy the inequalit!-. Set Q(rj = f i ( t )  - fi,,[(f). 
Then one can show that 3l(fi) 2 0 is equivalent t o  

where = E + ( k n i &  - KjR-lfi’. 
Steady-state versions of (16) are  studied  in [7 ] .  [30], 

where all possible Q are characterized. I t  would take us too 
far afield to provide the time-varying genpralizations, 
some of which are  straightforu-ard  to  obtain.  (The general 
idea is that (16)’ through  not  having  a  constant  term, is 
feasible to deal  with.  For example, if Q is invertible, (16) 
yields a liuear differential  inequality  in Q-I.) 
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7) Let  us  note  that  a sufficient condition  guaranteeing 
that n(t’) is positive definite for some  fixed t’, where II( . ) 
satisfies (5),  is precisely the complete  controllability 
condition 

Lt’ @(t’,s>R(s)K’(s)@’(t‘,s) cls > 0. 

(Nonsingularity of TI( 0 )  ca.n be  important in applications, 
see e.g., [29].) To see t,his, first simplify the problem b s  
selecting  a co0rdinat.e basis in which F = 0. Then suppose 
H(t’)a = 0 for some a. Because M(E) 2. 0, Ii 2 0 and SO 
f t ( t ) a  = 0 for 0 5 t 5 t’. Then H(t)a = 0 for 0 5 t 5 t’ 
and so,  again since M(n) 2 0, cr’[II(t)H(t) - K ( t ) ]  = 
-a’K(t) = 0 for 0 5 t 5 t ’ .  This means the controllability 
condition fails. 

Iv. REALIi54TION GIVEN THE EXTENDABILITY PROPERTY 

We st,art  with (1) and Assumption 2. In  very  broad 
terms,  the  strategy is &ill the same, i.e., we carry  out 
output  transformations  that  may  reduce t,he dimension of 
the process  whose  covariance is to be realized, and  date- 
space  coordinate basis tra.nsformations  which allow re- 
duct,ion of the “degree”  (dimension of @( .,-) matrix) of 
t,he covarknce to  be realized. These  latter  transformations 
are  such  that if t,he lower degree  covariance is realizable, 
the higher  degree  one is rea.lizable. 

In  case R(t) is nonsingular, realization follows with  the 
aid of II,(t) defined by (3) ,  as earlier explained. So we 
concentrate on  singular R ( . ) .  ,4s before, we shall have  the 
various const.ancy of rank  assumptions, a.nd we  shall 
actually  compute  the  smze matPix II( .) solving the rea.liza- 
tion  problem.  However, the  existence  argument, or t,he 
validat,ion of the  computation  procedure, is clifl0en.t. 

The  procedure is as follows. 
Step 1: This is ident,ical with  t.hat of the  last section. 

Step 2: This is identical up  to  the point, where we have 
Assumption 3 is used  again. 

R(t) = H(t)  = [HlW OnX(p,-P1)1 pt’ O p L p ]  K(t) = [ K l ( t )  &(t) &(t) 1 
n;it,h H2(t )  of rank p and of p columns. (Not,e that Assump- 
tion 4 is used again.) We need to  conclude t,hat we can  set 
K3(t) = 0. Let. y( t )  = [yl‘(t) yz’(t) y3‘(t)]’ be the process 
wit,h covariance @ ( t , ~ ) ,  part.it.ioned as H (  . ). Then 

E[Y3(T)Y3‘(7) 1 = [ o l @ ( T , T >  [K3(7) 1 = 0 

so y3(~) = 0 almost  everywhere.2  Therefore, for t > T ,  

without a  further  assumption, since at  this point, we do  not know 
* I t  is a moot  point.  whether we should  introduce the process y(  - )  

that. t.here is a proces y( .) for  which @ ( t , ~ )  = E [ y ( t ) y ’ ( r ) ] .  However, 
it is convenient, and here and  later, it shortens  an  argument not 
involving y( .) which would be roughly as follows. Partition u(t)  = 

[ul’(t) un’(t) 7 ~ 3 ‘ ( t ) ] ’  like N( .) and  cbserve  that sf; &’ u. ‘ ( t )@(t ,~)  
u(7)dt dr = [terns involving ul(. ) and u2(. ) but not u3( e)] 

and since u(.) is  arbitrary, for  nonnegativity  one  requires 

Consequently, the covariance is unaltered if we set K ~ T )  = 
0 for a.11 7 .  This leaves the problem of rea.lizing 

where H 2 ( t )  has p columns and  rank p .  (To this realizat.ion, 
one  adjoins y3(t) G 0 to obtain  a realization of t.he original 
covariance.) If p is zero, t,his leaves a nonsingular  problem, 
a.nd we a.re through. Assume then p # 0. 

Step 3: Proceed as earlier t,o change t,he co0rdinat.e basis 
so that 

Next, we  show (by  a different t.echnique from  tha.t used 
earlier) that, KB is symmet,ric and  t.hat we can, at least 
after  an allowable adjustment of KE, assume X[K2-2] c 
X [ K 1 2 ] .  First,  let y(.) = [yl’( .)  y2’(.)]’ be the process3 
with covariance (17). Observe that 

from  which the  symmetry  and n0nnegativit.y of &(t) is 
immedia.te. Invoking  Assumption 5 as earlier, let. S(t) be a 
nonsingular matrix  such  t,hat KZ2(t)S’(t) = [&?(t) 01 
with KB(t) of full rank. Define &(t) and &(t) by &(t) 
S’(t) = [KE(~) I?12(t)]. Our task is evident,ly to show 
that we can  take R,,(t) = 0. Set D(t)  = [I @ S(t ) ]y( t ) ,  and 
observe t,hat Q(t) = [Ql’(t) &’( t ) ] ’  where &(t) has  the 
form [g2’(t)  01. Then for t 2 T, 

Taking  note of the form of &’(T), it follows that H‘(t) 
@(t ,T)KlZ(T)  = 0 for t 2 T. Etidently, t.he covariance 
E[y( t )y’ (~) ]  would be  unaffected if we replace R I ~ ( T )  by 0 
for T 5 t ,  and  in  particular  for 7 = t. 

Now define the state-spa.ce coordinate basis change of 
(ll), t.o obtain p, &, and If with the  lat.ter two  matrices 
as  in (12). At this stage,  dropping the superscript  hat, 

Digression-Imertibility: A system S realizing @ ( t , ~ )  is 

As before,  one  could  avoid the  introduction of y(.) if desired. 
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termed  invertible if from  measurements on  the  out.put of 
the syst.em one can  obtain causally the syst.em input,, 
which is white noise, and  the  system init,ial stat.e. Differ- 
entiation  may  be  involved;  causality is essential. Observe 
that  up  to this point  t,he  algorithm has proceeded by non- 
singular  transformations  on the  output vector,  and  by 
change of the coordinate basis for the &ate-space of a 
realizing system. T h i s   m e a m  that i f  the  couariance (19) has 
an invertible  realkatiolz, so does  the  cmariance (1). Further, 
the relation between a  causal inverse for a system realizing 
(19) and one realizing (1)  is straightforward to  obtain 
from the output.  transformation  matrices. In  the remainder 
of Step 3, which we now describe, we shall introduce 
anot.her  covariance,  such  t.hat if it possesses an invertible 

(20) 

k =  
Fll(t)z. Notice that  the covariance of yZ(t), being % = ( t , ~ )  
& ( ~ ) l ( t  - T )  + . . . is differentiable  with respect. to  t 
and T to yield a  covariance of j', which possibly contains  a 
delta function term,  but no worse. This means that y 2 ( t )  
and  then j j z ( t )  is as well defined as yl(t) ,  in that it  may 
contain a white noise component  but.  nothing worse. 

It is immediate  from (20) t,hat Dl(.) ,  &(.) depend 
causa.lly on yl(.) and y ~ (  .): a differential  equation de- 
scription is provided by 

. .  . 

a = F 1 1 ~  + Fn?/z ~ ( 0 )  = 0. 

91 = ~1 - Hn"w - H~L';Y~ (21) 

j j 2  = 9 2  - Fz%yn - F ~ ~ Z L , .  

These  equations  can also be rea.rranged in  t,he following 
wag : 

(22)  

This rearrangement shows that yl( . )  and y2(.) are obtain- 
able, causally.: from G I ( . ) ,  &(-) ,  and y2(0). Consequently, 
if an invertible  realization  can be found  for E[j j ( t ) j j ' (~)] ,  
one  has,  with the  aid of (Z), an invertible  realization  for 
E[y(t)y '(+)].  Further, since (p1) are  inwrse  to (iL2), one 
can  construct the inverse for a(. , - )  by following (21) 
with an inverse for &( .: .). 

A lengthy  formal  calculation shows that  the associated 

covariance of G(t) is 

.Fu (~)K22(~) ]1 ( t  - T )  + . . .. ('23) 

The covariance & ( t , ~ )  of (23) is ,  with  a simple reordering, 
the same  as the covariance defined in (14)! which is the 
covariance  resulting after  reduction of the state-space 
dimension in  Step 3 of the earlier  method. In  the last 
section, the determination of a(. , .) essentially finished 
the procedure.  Here,  too, we are almost. done: supposing 
for t.he  moment a realization of &(t,~) is available,  one 
cascades with  this realization the linear  system of ( 2 2 ) ,  
taking for t,he init.ial state covariance of ( 2 2 )  

A messy calculation shows t,hen that, the  output of (22) has 
covariance (19). Another way of putting t.he point. is to  say 
that if one has a syst.em realizing &(-,.) in (23) ,  i.e., 
matrices e(.)  and j ( . )  and a nonnegative  definite fi0 such 
that 

e = TiFI1 + F11'fi + 66' e(0) = 

fi[H11 -F21'1 = [Ku FuK221 - 61' ('14) 

j j f  = Ro H21fKp2 - KZ1' 
[KrElZl - KZ1 K z 2  - K2?Fe2' - Fe?Ke2 1 

t.hen  a  system realizing a(-?.) is defined by  matrices G ( - ) ,  
J (  - ), and II, given  by 

and  these matrices  together wit,h t.he matrix 

sat.isfy t,he realizat,ion equat.ions (2). 
The essentials of Step 3 of t.he realization procez *s are 

now complete. As for the earlier procedure, the problem of 
realizing the original a(. , . ) is reduced by St.ep 3 t o  that of 
realizing a(. , - )  of lower degree. Reapplication of Steps 1-3 
will cause  furt.her degree, a.nd possibly output dimension, 
reduction  until  either a nonsingular covariance is encoun- 
tered, or one of zero degree or zero output dimension. 
There  are however two  caveats.  First,  the various con- 
stancy of rank  and differentiability  assumptions need to  be 
fulfilled. Second, Assumption 2. needs t o  br retained  for the 
various  covariances arising successively in the procedure. 
That,  the extensibility  property,  other than perhaps the 
observability part of it, is retained is immediately clear. 
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The extension of F and H on (tl,  tl + e ]  allow via (21) 
extension of the doma.in of definitions of & ( t , ~ ) ,  and 
indeed its nonnegativinty. To see that the observability 
pr0pert.y is retained, one can use the following lemma. 

Lemma 1: With 

with F 2 2 ( t )  of dimension p X p ,  then Assumption 2 implies 

for a.11 s in [tl ,  tl + E], with .k(., .) t.he  transit.ion  mat,rix of 

P/.ooj: Suppose the result, is false. Then  there exists 
some nonzero x1(t1) such that, t.he solution n ( t )  of &(t) = 

Fllxl(t) sat.isfies Hn‘(t)rl(t) = 0 and -F21(t)x1(t) = 0 on 
[tl, tl + E]. Then  the solution r(t) of d= Fx with z(tl) = 
[zl’(tl) 01’ is evidently z(t) = [xl’(t) 01’ and satisfies 
H‘(t).r(t) = 0. This  cont,radicts  Assumption 2 .  

For  nonsingular  covariances, it is known t,hat an in- 
vertible  realization is defined by  the minimum n(t), viz.? 
IT, (t) .  Let. us nom show  how this not.ion extends t.o singular 
problems. The algorithm of Section 111 shows tha.t the 
nonuniqucnrss  in choice of II(t) satisfying X ( l I )  2 0 can 
a.11 be  referred t.o the nonsingular problem derived in the 
course of t,hr algorithm, and  that. IT,(t) for the original 
problem is given  by  a  minimum n(t) for the nonsingular 
problem. Thc material of this section shows t>hat,  an in- 
vert.ible realization for the nonsingular  problem yields an 
invertible  realization  for the singular problem. Putting 
these  ideas  together  with the known  nonsingular problem 
result,, it iol1ol;vs t,hat for singular  problems  too,  invertible 
realizations are associated  with  mininlum I Im( t ) .  

The quest.ion arises as t.0 how an inverse syst.em can  be 
built.  That, for  a  nonsingular  covariance is easily obt.ained 
[13], 1191; one would precede t,his by a cascade of various 
nondynamic nomhgular t.ransformations,  corresponding 
to St,eps 1 and 2 and  the bulk of Step 3, together  with 
dynamic  systems of the form (21), as  noted earlier. It is 
worth  noting that.  the buildup of the inverse  system 
act.ually proceeds in parallel with the algorithm  for com- 
puting I I ( f ) .  It would be valid,  in fact., to  view t.he a.lgo- 
rithm  as a met,hod for  constructing  a  whitening  filter, wit,h 
a  realization of the original cova.riance matrix being 
obta.ined as a  byproduct. 

We also have  a  very quick formal  solution to  the singular 
filtering problem. Consider the system 

dl = FlI(t)XI.  

basis change will separa,t.e out  the unobservable part of 
x(.); measurements y ( - )  are of course useless for est,i- 
mating  this  part of x(.), and for  filtering purposes, we 
can confine attention  to  the observable  part,.) Then 
E [ x ( t ) y ’ ( ~ ) ]  = @ ( ~ , T ) K ( T )  for T < t whereK = nH + GJ’ 
and lI is E[~( t ) z ’ ( t ) ] .  Suppose the following syst.em with 
appropriate known initial condit,ions is a ca,usally in- 
vertible  realization of E [ y ( t ) y ‘ ( ~ )  ] : 

i = F2 + &a 
y = H’% + 31%. (28) 

One must  then  have E[5( t )yr (7)]  = @(~,T)K(T) for t > 7 ;  

for  suppose that E [ ? ( t ) y ‘ ( ~ ) ]  = @(~,T)R(T) for t > T ,  t,his 
being the only possible form  on  a,ccount of (27). Then,  for 

But. a.lso, this quantity is H’( t )@(t ,~)K(7) .  By  complete 
observability, K ( T )  = R(T). 

It. follows that. ?(t) = E [ x ( t ) l y ( ~ ) ,  T < t ]  because, fist., 
E{ [x(t)  - ? ( t ) ] ‘ y ( ~ ) ]  = 0 for 7 < t ,  and second, z( t )  is a 
function of a(,), T < t and t,herefore of y ( ~ ) ,  7 < i by  the 
causal invert.ibility. The filtering error is easil); seen to  be 
11 - fi-. The role of ?(-) in t.he scalar  singular problem- 
actually  in smoot.hing as well ~s in filt.cring problems-has 
been illuminated in Geese): [14]; for the nonsingular case 
see [X?], [331, (581. In practice, it is not even necessa.ry to  
construct  t.he  realization (28). As wc have seen, the inverse 
of (28) is actually  obtaimble directly  from the given co- 
variance, a.nd examination of the steps 1ea.ding up  to (21) 
easil. shows t.hat  components of 5 may  act>ually  be ident.i- 
fied as  linrar combinat,ionu of the  states of the inverse 
system. 

1 > T ,  E[y(t)y’(7)] = W’(f)E[2(t)y’(7)] = H’(t)@(t,T)R(T). 

V .  STATIOSARY COVARIANCES 
The algorithm of thc previous  sections applies without 

change to  the realization (over a  finite  interval) of 

a(t,T) = ~ 6 ( t  - 7 )  + H’eP(f-7)K l(t - 7) 
+ K’eF’(T-l)H l (7  - t )  (29) 

wherc! F, 11, I(,  and R are  constant matrices, and (R(t,O) 
has  a  Fourier  transform which is nonnegative  definite 
Hermit.ian  for  all  values of its  argument.  This  approach 
will, however, 1ea.d  t.o timc-varying G and J in the realiza- 
t.ion, and  to this  extent. is unsa.tisfactorp. To obt.ain a more 
pract.ica1 solut.ion, it is desirable to consider t,he  problem of 
realization  over  a semiinfinite int,crval;  t.hat is,  n-e allow 
t,he  system realizing a(. ,. ) t.0 start  at time - a. 

In  this case it is useful (although not. entirely  essential) 
t.o make the following assumption. 

d = Fx + GU E[z(O)x’(O)] = Y o  (27) Assu.mption 6: The pair [F: HI is completely observable. 
This immediat,ely implies that, Assumpt.ion 2 is sat.isfied, 
so that  the procedure of Section I\’ ma.y be  carried out.. 

where u(-) a.nd u ( - )  are  unit  intensity Gaussian  white Xotc the following. 
noise proccwcs, a.nd u( .), E ( . ) ,  and x(0) are mut,ually  indc- 1) Assumptions 3-5 (requiring  consta.ncy of rank  and 
pendent. and of zero mean. Assume that (27) is completely differentiability of certa.in  quant,ities) are always sat.isfied 
observable,  in the sense that H ’ ( t ) % ( t , ~ ) x ~  = 0 for all in the stat.ionary case. 
t 2 7 implies xu = 0. (If t,his is not  the case, a  coordinate 2) At, no point  in  these  steps o f  the algorithm  preceding 

?/ = H’x  + J ~ u  + J ~ v  
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the obtaining of a nonsingular R matrix do time-varying 
matrices  appear. 

3) By L,emma 1, Assumption G cont.inues to be satisfied 
at  every stage of t.he algorit.hm. 

Finally, then, a  nonsingular  covariance defined by 
matrices p,  E?, fi?! and l? remains to be  realized. Sow let. 

li = lim 11(t,1~) = lim n(t,tO) 
to+- m t + m  

rvhere 

iI = nF' + FrI + (HE? - R)R-l(ITB - R)  
rI(to,t*) = 0. 

The limit mists by Assumption 6 as shown in e.g.! [30]. 
Of course? P is constant  and satisfies an algebmic Riccati 
equation.  Drfining (; = (jf - p@)&-i a,nd j = f i $  

essentially completes the procedure.  Alternatively. the 
approach of Section 111 may  be used, since we can now 
justif?- Assumption 1. 

Example: Since the algorithm is suited more to   an 
efficient computer  implementation than  to hand calcula- 
tion, a, detailed example is difficult. to present. However, 
the simple example below illustrates some of the more 
important points. 

Consider the covariance (29) wit.h 
F = [--I] H = [-1 11 

K = [ O  21 R =  [; 001. 
Then  the calculations of Sect,ion I11 proceed as follows. 

Step 1: r = 2: pl = 1. S o  basis cha.nge is necessary. 
S f e p  2: H 2  = [l], which is already of full rank. Again, 

no change is necessary. 
Step 3: In  the  notation of Section 111, we have KSI = 

[O], K ,  = [ 2 ] ,  and Kn and K,, have zero rows. Finally, 
then 

P = K?2 = 121. 

Sote  that  no  Riccati  equation  needed to  be solved for this 
esamplr, since P becanw completely  determined  in Step 3. 

S O W  

Lo 0 01 Lo1 
So we identifv G = [ 2 ]  and J = . [;I 

VI. COXCLUSION 
We have  presented  a  procedure for realizing singular, 

finite-dimen~ional  matrix covaria.nce functions, which at  
the sanlr  timc  procidw a new, and  simpler,  approach  to 
the scalar,  singular cova.riance factorizat.ion problem. 
It is cas?- to construct a causally invertible  realization,  and 
we have shown that  the associated state covariance 
matrix is the  nininlum  matrix  at every time f over the 
set of such  matrices associated with all realizations of the 
covariance. 

To be  sure, we do require some technical constancy-of- 
rank a.nd differentiability assumpt,ions for the ideas to  go 
t,hrough. But  it should be  noted that existing treatments 
of t.he scalar  singular problem [14], [16],  [17] also require 
such  assumptions. 

As earlier conlmentcd, there  are some interesting con- 
nections to  singular  control  problems which we shall ex- 
pound  separately;  here,  one  is  interested  in the  dual of the 
n matrix associat.ed with  the invertible  realization, but 
one is also interested  in  determining the optimal  controls 
and singular  strips.  Connection to  time-varying  network 
synthesis problems can  be  found  in  [29]; the network 
parallel of the  step involving reduction of the stabe-space 
dimension of the covariance to  bc synthesized is the 
series or shunt  extraction of inductor or capacitor elements. 

APPENDIX I 
Suppose there exists  a  nonnegative definite symmetric 

Po together  with C(.) ,  J ( . )  defined on [O,tl]  such  that, 

I' = PF' + FP + GG' P(0) = Po 
PH = K - GJ' 
J J '  = R. 

Observe t.hat  these  equations  imply 

N ( P )  = 
P - PF' - FP PH - K 

(PH - K)'  R ] = [-?I 
. [G' - J ' ]  2 0 

and so 

P - PF' - FP - (PH - K)R- ' (PH - K) '  2 0. 

KOTV use the definition (3) of IT,; set Z = P - II, to obtain 

Z - Z [ F '  + HR-'(H'II, - K ' ) ]  - [ F  + (IImH - K)R-I 
. H ' ] Z  - ZHR-'H'Z 2 0 Z(0) = Po 2 0. 

It is immediate that Z(i) 2 0 and so IIm(i) 5 P ( f ) .  Also, 
the definition of IT, (. ) implies 0 5 IT, ( t )  . 

Notice also that  the mat.rix n,( .) defined by (3) has 
been shown by the above  argument to  be nlinimum 
amongst all those  matrices n(.) 2 0 satisfying X ( U )  >_ 0; 
by minimum, we mean for all t and such IT(.), II,(t) 5 

An  alt.ernative  approach  to  establishing that 0 5 TI,(t) 
5 P ( f )  is available using the results of  1381. Provided one 
establishes the existence of an innovations  representation 
realizing a(. , .) independent,ly of the Riccat.i  equation 
solution  bounding  procedure abow, one can show that 
TI, is actually  E[.?(t).Y(t)],  where F(f) is both  the  state of 
t.his innovations  representation  and the mean of z(t) con- 
ditioned on measurement of a sample  function of the 
process with  covariance a(. , .). Then 0 5 rI,(t) 5 P(1) is 
immediate. The  better  technique to  be used for establish- 
ing this  inequality is a function of the background of the 
reader. 

The  interpretation of n,(f) as E[P(t)P'(t)] also esta,b- 
liihes its minimality as a  solution of ( 5 ) .  

IT (0 . 



APPENDIX I1 t E [O , t l ] .  Since *(., 0) depends  continuously on R(t ) ,  
Our  task is to  prove t.he following result,. Let, a(. ,. ) be 

defined via 

@ ( t , ~ )  = R(t)G(t - 7) + H ’ ( t ) @ ( t , ~ ) K ( r ) l ( t  - T )  

+ K’(t)@‘(r , t )H(r) l (r  - t )  (1) 

wit,h R(t )  nonsingular for all t .  Then  the following three 
statements  are  equivalent. 

1) @(t,r) - $(t  - T) for some 7 > 0 is nonnegative  on 

2) fl j’: u’(t)@(t,~)u(r) d t d ~  = 0 and a(.,-) non- 

3) @ ( a ,  .) has the extendability  property described in 

[Wl I. 
negative  on [O,t,] implies u(t) = 0 for u(.) cont.inuous. 

Assumption 2. 

there exists a  suitably small 1 so that. \k ( t ,O)  computed wit.h 
R(t) replaced  by R( t )  - ?I  is nonsingular for all t E [O, t1] ,  

and so that R(t) - V I  is positive definite for all t E [O,t,]. 
The result, follosvs by the corollary. 

3 =) 2: Suppose 6i is’extendable, but  that condition 2 is 
not fulfilled. Let fi be  such that J: a ( t , ~ ) a ( ~ ) d ~  = 0 for 
t E [O,t1].  For the moment,  let a continuous .(.) be 
a.rbit,rary on ( f l ,  tl + E] and  equal to  ka for some constant k 
to be specified on [O , t l ] .  Then 

To show the equivalence, we shall use the following iemma. 

the transit,ion  matrix defined by L;l+€J;:+c 

a 
at 

+ 2kJf1+f u’(t) dt s” a(t,r)fi(T)czr 

+ 2k 1;“ u’(t)H’(t)@(t,tl) cli @(tl,T)K(r)fi(T)dr. 

Lemma: Let a(.,.) be as defined in (I), and  let *(t,r) be 0 

- 
F - KR-lH’  -KR-lK’ 

- ZC‘ ( t )a ( t , r )zL(T)  dtdr 
- P(t ,r)  = 

HR-’H’ -F’ + HR-lK ‘1 * ( t , T )  

*(r,r) = I 

and  partition 9 conformably. Then 6 % ( t , ~ ) ~ ( r ) d r  = 0, 
t E [O,T], for some T and u( .)  not. ident,ica.lly zero if and 
only if \ks(T,O) is singular;  furt.her, for such  a u ( - ) ,  

Proof: Suppose JOT a(t,r)u(r)c~T = o for t E [o,T]. 
Set. ~ ( t )  = Jh @(t , r )K(r )u ( r )d~ ,  so t,hat k = F x  + Ku? 
~ ( 0 )  = 0, and p ( t )  = @‘(r , t )H(r)u . (~)dr ,  so t.hat p = 

-F’p - Hu., p ( T )  = 0. It follows that R(t)u(t) + H’(t) 
z(t)  + K’(t)p(t) = 0, so that 

~:@(T,r)K(T)u(r)Clr # 0. 

By t.he Lemma, &’ @ ( t , , r ) K ( ~ ) , a ( ~ ) d ~  = z(tl) # 0. 
Choose ~ ( t )  = H’(t)@(t?fl)x(tl) on (tl,  tl + e ] !  and observe 
that.  for large negative k a contradiction is obtained. 
(Admittedly, z((.) is discontinuous, but  it can be appro- 
priately  approximated  by  continuous  functions,  and a. 
cont.radiction  still is obtained.) 

Sote  the critical use of the observability  part. of the 
extendabilit,y definition in the above argumrnt,  to elisure 
that  the second tern1 on the right of thc last. cqualit,y is 
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