minimal rejection attenuation and was conceived as an in-
verse Chebyshey filter: its attenuation is plotted by the broken
line in Fig. 4. In the passband, the waveguide filter presents
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Fig. 3A Stop frequencies (2b[AH,,) of the Hyy mode in a stepped
E plane stub filter
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Fig. 3B Attenuation |S12| of the Hip mode in stepped stub filters
according to Fig. 3A as a function of the frequency 2b/AH,,
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Fig. 4 Attenuation |S12| of the Hyg mode in three cascaded stub

filters

The attenuation of a Chebyshev bandstop filter composed of lumped elements is
shown by the broken line

an attenuation of less than 4dB. The stubs are spaced by more
than half the guide wavelength of the H,, mode at the mid-
frequency of the stopband. Higher modes are therefore
attenuated by more than 96dB between the stubs and are
disregarded in the numerical calculation.

I am indebted to J. Hagenauer and G. Kowalski for the
numerical calculations.

W. BRAECKELMANN 4th September 1969

Lehrstuhl Theoretische Elektrotechnik
Technische Hochschule Darmstadt
61 Darmstadt, W. Germany
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OPTIMAL REGULATOR WITH BOUNDS
ON THE DERIVATIVE OF THE INPUT*

[+e]
The problem of minimising J(x'Qx + u’Ru)dt for a com-
o

pletely controllable linear system, subject to the constraint
li] <1, is shown to be equivalent to a singular optimal-
control problem; the known singular theory is then used to
obtain the optimal control.

The standard regulator problem of optimal control is to

[2e]
minimise the performance index V[x(zo), u, fo] = j (x'Ox +
]

u’' Ru)dt for the linear dynamical system x = Fx + Gu. F and
G may possibly be time varying, and the control # may be
either a scalar (single-input system) or a vector (multiple-
input system).

If no constraints are imposed on «, the problem is simply the
standard regulator problem for which a solution has been
known for some years.! The regulator problem with the
additional constraint |u| < 1 (the ‘problem of Letov’) has
recently been solved; see, for example, Reference 2. However,
to the authors’ knowledge, no consideration has been given
to the regulator problem with the restriction || < 1, which
would limit rapid changes in the control. A little thought will
show that there are, in fact, practical applications which
require this restriction. This, then, is the problem considered
in this letter.

The usual assumptions will be made concerning the system,
namely that the pair [F, G] is completely controllable for all
t>tg, and Q and R are nonnegative definite and positive
definite, respectively. For clarity of notation, # will be con-
sidered to be a scalar, but the results given here are equally
applicable to multiple-input systems.

To make the problem tractable, we introduce the new
variables

. . . X
#=uand x =
U

[where the initial condition u(#g) will be specified later]. This
gives the new system shown in Fig. 1. The state equation of
the new system is

. . . 7 F . 0
% = FX + Gi where F = 0 0 G = 1

and the performance index becomes

© Q 0
V= J"f’Qxdt where 0 = I:O R]

The control-variable constraint is now |é| < 1.
The new problem is now the ‘singular’ optimal-control
problem, solved for the time-invariant single-input case in

e —————

original
1 system

Fig. 1 Modified system

* Work supported by Australian Research Grants Committee and Shortland
County Council Postgraduate Scholarship
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References 3 and 4 and for the time-varying multiple-input
case in Reference 5. The optimal # turns out to be ‘bang—
bang’ almost everywhere, but of the form # = K’% on the
‘singular strip’ K/x =0, |[K’%| < 1, where K and K, will be
given below. Moreover, the optimal bang-bang control law
near the origin (excluding the singular strip) is given by

i = sgn (K,%)

For large X, this law is no longer optimal, but it is probably
the best practical approximation to the true optimal bang—
bang law (which is, in general, a rather complicated function
of X).

In practice, the dual-mode control proposed above—bang—
bang in some regions, linear in others—would probably be
inconvenient. However, Reference 6 has shown that, if a
bang-bang law such as that proposed is used throughout, all
trajectories reaching the singular strip will chatter or slide
along it in such a way that the effective control law is the
linear one above. A practical realisation of the optimal control
is then simply i = sgn (K{%), which is strictly optimal for
small x, and near optimal for large x.

To compute K, we use the following procedure (described
more fully in References 4 and 5): Form the matrices

G,=FG—-G S5 =0G R, =C06
and let TI(z, 1)) be the solution of the equation
— I = II(F — G,R{'S)) + (F' — SR 1GPIT
—IIG\R;'G[IT — S\R'S] + O with TI(¢#;,¢) =0
Now put
P(r) = lim II(z, 1)

15—

The assumptions made concerning Q and R and the complete
controllability of [F, G] ensure that this limit will, in fact, exist.
Then

K, = —(PG, +51)Rr'
Also, the matrix K (if it is required) is given by
K=K, +FK,

In the present case, we can partition P as

P [Pl, P2:|
PZ P3

where the partitioning scheme is the same as that of F or Q.
Substituting all partitioned matrices into the above Riccati
differential equation, it is found that

~P,=PF+FP, —PGR 'GP, +Q P,=0
P3 = 0 \
Also
v — P,GR™!
Kl:_(PGI +S])Rr'= —1

The equation of the singular strip is K;£ = R~!G'P;x+u =0,
and, if we set u(rg) = — RGP x(ty), and x(t,) is sufficiently
small for |4| <1 to hold, the system trajectory will always
stay on the singular strip, and « will always be given by
u = *“R;lc’P|X.

This, as it turns out, is precisely the optimal control for no
constraints on «. This is an expected result, since the singular

u J'I X =Fx +Gu l—l

A 243

T T

Fig. 2 Feedback configuration
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strip is merely that region where the control lies within its
constraints. The significance of this result is that, if we are
free to specify u(zy), we should choose it so that the initial
point in (x, ) space is on the singular strip; for a given x(¢y),
any other u will certainly be ‘less optimal’ than a result which
was derived without assuming any constraints on u.

For large x(zy), it is, in general, impossible to choose a
u(ty) so that the initial point is on the singular strip. The
optimal (or, strictly speaking, the suboptimal best practical
approximation to the optimal) « is then given by a bang-
bang law; i.e.

it = sgn K%
or 4= —sgn(R'\G'P;x + u)

This gives the feedback configuration of Fig. 2. If we are not
free to choose u(?y), this completes the solution.

Sufficient conditions for the stability of the closed-loop
system may be found in References 3-5. In general, it is
difficult to guarantee global asymptotic stability, but the
system may always be made asymptotically stable in a
neighbourhood of the singular strip by appropriate choice of

0.

P. J. MOYLAN
J. B. MOORE

29th August 1969

Department of Electrical Engineering
University of Newcastle
NSW 2308, Australia
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ELIMINATION OF DELAY TIMES IN
XBAND GUNN-EFFECT OSCILLATORS
USING R.F. INJECTION

A simple theory is given showing how a small amount of r.l.
power injected at a frequency near the Gunn-diode frequency
can eliminate delay times in pulse operated Xband Gunn-
effect oscillators.

Introduction: In a recent paper,' the author discussed theor-
etically the nature of growing oscillations in Gunn-effect
oscillators. In particular, results were obtained for the delay
times associated with pulse-operated Xband Gunn-effect
oscillators.

If the bias voltage is very large compared with the threshold
voltage, then, on satisfying certain relations between the low-
field parameters of the Gunn diode and the equivalent LCR
parameters of the microwave cavity, a minimisation of the
delay times could be achieved. If the bias voltage is made
smaller, e.g. 2 to 3 times threshold, the delay time will increase
often by many orders of magnitude.

In this letter it is shown that, for low-bias conditions, by
injecting a small amount of r.f. power into the microwave
cavity (see Fig. 1), the delay times can be totally eliminated.

Notation: The notation and specification of delay times are
identical to those used in Reference 1. The differential equation

is defined by eqn. 35 of Reference 1.
The differential equation describing the nature of growing
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